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2 CLIMATE-FOREST-WATER-PEOPLE RELATIONS: SEVEN SYSTEM DELINEATIONS

2.1 Introduction

In this chapter, we review current scientific understanding 
and hypotheses at seven system delineations that build up 
from the level of a ‘tree’ interacting with water, to that 
of a social-ecological system at the scale of landscapes. 
A system delineation separates internal entities that in-
teract dynamically from external entities that may have a 
one-way influence but are not significantly influenced by 
feedback from within the system boundaries. Each sys-
tem level has its characteristic outcomes or results. The 
seven (nested) system delineations (Figure 2.1) are:
1.  Trees and water: Structure and function of leaves, stem 

and roots, which are part of:
2.  Forests, soil and climate: Sponge effects; part of:
3.  Atmosphere, oceans and terrestrial vegetation: Global 

water fluxes; part of:
4.  Precipitation, evapotranspiration and discharge: Water 

balance and buffering; part of:
5.  Dynamic landscape mosaics: Streamflow; part of:
6.  Land and water use rights, local knowledge and forest 

institutions: Landscapes; part of:
7.  Social-hydrological systems: Ecosystem services as 

valued human benefits.
Elsewhere in this report, three additional system concepts 
are used that build on system delineation 7 (and include 
it as a subsystem) and explore governance of a society 
dealing with issues of coherence between the sustainable 
development goals: 
8.  Contested and evolving forest-water paradigms in 

public discourse, legislation and underpinning exist-
ing policies (as covered in Chapter 1); 

9.  Climate change policy in its relation to forest and  
water interactions (as covered in Chapter 7); and

10.  SDG coherence in an interlinked, multiscale and 
polycentric governance perspective (as covered in 
Chapter 7).

2.2 Forests, Soils and Water

2.2.1 Trees and Water: Structure and Func-
tion of Leaves, Stems and Roots

Whole-plant physiology
Ecophysiology at the whole-plant level as a field of sci-
entific study has a long history and rich toolbox of meth-
ods (Reynolds and Thornley, 1982; Kramer and Boyer, 
1995; Lambers et al., 2008). Interactions between trees 

Nesting of ten systems describing the relation between forest, water and  
Sustainable Development Goals (SDGs)

Figure
2.1

Source:  Authors' own elaboration
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and water are shaped by their leaves, stems and roots. The 
leaves and their stomata lose water in the process of tran-
spiration, cooling leaves while allowing carbon dioxide 
(CO

2
) to be captured in photosynthesis.

Green leaves are essential for photosynthesis, but with-
out stems, the leaves would stay close to the ground and 
be shaded by others. Trees, found in over 100 of the 620 
plant families (often alongside other life forms), invest in 
perennial stems as a generic solution for these challenges. 
The stems transport water in their xylem (plant tissue), 
where the need to avoid getting clogged by air bubbles 
(‘embolism’) in wide vessels under dry conditions (Domec 
et al., 2006) is balanced against enhanced transport capac-
ity in such vessels under wet conditions. Wood density is 
negatively related to vessel size, with high growth rates 
generally associated with low wood density, early suc-
cessional status, low drought and fire tolerance and short 
life-spans (Larjavaara and Muller-Landau, 2010).

The roots are the primary organs for water uptake, and 
their amount and distribution in the soil determine op-
tions for water and nutrient uptake and structural stability 
(with increased demands in trees). Yet, every unit of dry 

matter can be used for supporting only one of the three 
essential organs (i.e. leaves, stems and roots) and the allo-
cation can be considered a strategic as well as an adaptive 
choice (van Noordwijk et al., 1998b, 2015a). The ability 
of trees to persist in dry or seasonally dry climates thus 
depends on a variety of eco-physiological adaptations 
to water scarcity (Breshears et al., 2009). Root patterns 
of trees present in natural vegetation differ in predict-
able ways based on climate and groundwater table depth  
(Fan et al., 2017). 

Diversity of contexts and ecoregions

Different tree species have different water needs depend-
ing on their phenology (timing of green leaf presence, 
flowering and fruit production) and crown architecture, 
and have different access to soil water based on their root 
development, making them adjusted to one or more of the 
ranges of climates (Box 2.1). Competition for the same 
water resources is minimised through mixtures of spe-
cies with canopies that do not overlap, that develop their 
leaves at different times of the year, or that have different 

Diversity of contexts for forests and trees
As is evident from the Holdridge (1967) climate and vegetation classification, a wide range of forest types 
occur in many hydro-climatic conditions. Based on the ratio of annual precipitation to potential evapotranspiration we 
can expect shrub (<0.5), dry forest (0.5-1), moist forest (1-2), wet forest (2-4) or rain forest (>4). This ratio reflects rain-
fall, ranging from superhumid (> 8000 mm/year) to superarid (< 125 mm/year), and latitudinal zones (tropical, subtropical, 
warm temperate, cool temperate, boreal, subpolar and polar) interacting with altitudinal belts (lowland to montane and 
alpine) in determining temperature and potential evapotranspiration. The latitudinal zones also determine the pattern of 
seasonality (Dewi et al., 2017).  A global hydro-climate map shows a wide range of P/Epot ratios (P = precipitation;  
Epot = potential evapotranspiration, both at annual time scales) (Figure 2.2 A). For the 33.6% of the global land area with 
a P/Epot ratio < 0.5 there is only sufficient water for episodic rivers; for the 35.3% with a P/Epot ratio between 0.5 and 1, 
water supply is limited part of the year, and rivers often are strongly seasonal. For the 31.2% with a P/Epot ratio > 1 there 
usually is sufficient water to support permanent rivers. 

The main climatically determined forest categories are:

Hot and wet. Consistently warm, never freezing. Includes tropical rainforest, tropical peat swamps (Gumbricht et al., 
2017), tropical montane cloud forests (Bruijnzeel and Veneklaas, 1998), and lowland moist forests. Source of the world’s 
largest rivers. 

Hot and dry. Consistently hot leading to water stress and temporary river flow only after occasional storms that 
exceed the infiltration capacity of the soil. 

Subtropical. Warm, with wet (monsoon) and dry season and associated seasonal rivers. Growth limited by seasonal 
moisture availability (D’Odorico et al., 2010; D’Odorico and Porporato, 2006; Newman et al., 2006). In the subtropical 
dry forest/Guinea savannah/ Sudan savannah/Sahel gradient wet and warm seasons may coincide, while in the Mediterra-
nean zone, winter rains determine a relatively cool growing season (Llorens et al., 2011). In either, forest vegetation may 
depend on deep water storage (Bastin et al., 2017). 

Moist temperate. Hot and cold seasons are clearly differentiated and precipitation can be seasonal or evenly distrib-
uted throughout the year, supporting deciduous, evergreen, or mixed forests with modest year-round river flow.

Cold and wet. Precipitation is much higher than potential evaporation, generating abundant river flow. Includes moun-
tain climates with snow and ice. 

Cold and dry. Snow and ice-dominated. Permafrost may limit rooting depth, accelerating runoff. The shallow thaw zone 
may be subject to drought and prone to wildfire (de Groot et al., 2013). 

More differentiated schemes exist. In defining ecoregions, Olson et al. (2001) identified 867 unique terrestrial areas that 
are relatively large units of land containing a distinct assemblage of natural communities and species with boundaries that 
approximate the original extent of natural communities prior to major land-use change. These ecoregions are contained 
within 15 biomes, as reflected in Figure 2.2B. The trees in these various vegetation types differ both above- and below-
ground in key properties affecting their hydrological functions.

Box
2.1
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rooting depths (González de Andrés et al., 2017). As a 
result, compared to single-species stands of trees, natural 
mixed forests can use water more efficiently (González 
de Andrés et al., 2018) and, on aggregate, respond less 
strongly to climate variability (Creed et al., 2014; Blanco, 
2017; Laskurain et al., 2018; Kotlarz et al., 2018). Such 
ecological diversity effects can be mimicked in mixed 
tree-crop (agroforestry) systems in dry zones that can use 
more water compared to trees or crops alone (Bayala and 
Wallace, 2015; van Noordwijk et al., 2015a).

Tree rooting depth may also affect phenology, even 
in wet tropical climates with low seasonal variation, 
as it allows trees to benefit from dry (sunny) periods 
(Broedel et al., 2017). Tree phenology effects on hy-
drologic processes may be more pronounced under 

single-species, even-aged forests, where phenology is 
synchronised, compared to mixed-species, multi-aged 
forests, with diverse phenology (Wright et al., 2017). 
Forest stands dominated by evergreen species tend to 
impact dry season low flows to a greater extent (in 
terms of proportional reductions in streamflow) than 
annual streamflow totals (Scott and Smith, 1997). Ac-
tively growing conifer forest plantations are associ-
ated with up to 50% reductions in summer streamflow 
relative to old-growth conifer forests (Perry and Jones, 
2017). Naranjo et al. (2011) documented for forested 
watersheds of western North America that trends in the 
observed water balance can be associated to land cover 
disturbances well before the start of hydro-climatic ob-
servations, a century ago.

Global maps of A. Hydroclimate (precipitation (P) relative to annual potential 
evapotranspiration (Epot) and B. Fifteen terrestrial biomes derived from 867 
ecoregions

Figure
2.2
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Leaf Area Index (LAI)

The LAI of a forest or collection of trees is the total (one-
sided) leaf area per unit two-dimensional ground surface 
area. If leaves were evenly spread out, an LAI of 1 would 
represent full coverage of soil and complete light inter-
ception. Given the architecture of plants, an LAI of 2-3 is 
typically needed for capturing 95% of radiation. An LAI 
of 5-6 is common in closed-canopy forests and allows 
only a small fraction of incoming radiation to reach the 
forest floor. Similarly, the leaf area also intercepts a large 
share of precipitation before it reaches the ground, but 
most of this drips off the leaves and continues its down-
ward journey. The LAI of a forest or trees is influenced by 
a range of factors that impact the physical attributes of the 
canopy (i.e., canopy leaf density): 
	 	inherent characteristics of forest/trees (e.g., species 

composition, age class distribution, tree size, tree den-
sity, canopy architecture, and canopy phenology); 

	 	availability of, and competition for, light, water, and 
nutrients, which influences the spatial arrangement of 
the forest/trees (e.g., riparian, upland, forest margin ef-
fects); and

	 	anthropogenic effects and management practices (e.g., 
genetic modification, landscape alteration, weed con-
trol, harvesting, fertilisation, pruning, thinning and 
irrigation); and any disturbance that alter the area of 
leaves on trees (e.g., drought, wind, pests and diseases, 
pollution and temperature extremes). 

Because transpiration takes place through stomata pre-
sent on plant leaves, leaf area and water use are correlated 
(Gebhardt et al., 2014). In general, the higher the LAI, 
the greater the transpiration potential of the vegetation. 
However, increases in LAI are not directly correlated 
with rates of transpiration, but are moderated by water 
and energy availability, vapour pressure deficit (moisture 
demand of the air), and resultant variation in stomatal 
conductance (water and CO

2
 fluxes) within the canopy. 

The LAI of a forest, such as a monoculture plantation, or 
mixed species/mixed age forest, consequently has signifi-
cant effects on forest hydrology. As LAI, and the resultant 
transpiration potential, increase (usually with increasing 
tree age) so does the potential for extraction of water 
from the soil profile, through the trees' stems and leaves, 
into the atmosphere. Resultant changes in soil water at 
different depths in the soil profile subsequently affect 
infiltration, groundwater recharge and ultimately, stream-
flow. LAI also affects other hydrologic processes such 
as throughfall, stemflow, evaporation of leaf-intercepted 
rainfall and air turbulence (Hall, 2003). 

Seasonal variation influences forest hydrology 
through the timing of leafing and associated interception 
and transpiration. Forest phenology includes leaf flush, 
senescence, flowering and fruiting, and can be under-
stood as balancing the photosynthetic opportunities of a 
low cloud cover, high-radiation season, with water avail-
ability in the wet season. It is modulated by the pres-
ence of pollinators, seed dispersers and predators, pests 
and diseases. In deciduous forests, phenology strongly 
influences seasonal patterns of evapotranspiration, 

groundwater recharge and streamflow, but phenology of 
evergreen trees also produces noticeable seasonal vari-
ations in streamflow and streamflow response to forest 
change (Jones and Post, 2004). 

Rooting depth 

Forests and trees obtain most of their water through their 
roots, extracting it from soil pores. Root length density 
(length per unit volume of soil) determines the degree 
to which roots have access to all soil water; it varies 
with species, age, stand density, and soil characteristics. 
Woody vegetation usually has deeper roots than grasses, 
allowing it to take up water from deeper groundwater as 
well as soil moisture in the unsaturated zone (Moore and 
Heilman, 2011). While short-lived annual species in de-
sert biomes have shallow roots, perennial species (includ-
ing trees) in seasonally dry regions generally have deeper 
root systems than in those in permanently wet regions. 
Also, root systems in coarse-textured soils with rapid in-
filtration and limited water storage are generally deeper 
than those in fine-textured soils (Collins and Bras, 2007). 
These differences can be found as adaptive responses 
within any plant species (‘functional equilibrium’ theory; 
van Noordwijk et al., 2015a), but also between species 
most commonly found in these various environments. 
Rooting depth is not static and may change dynamically 
through the year. Water below the deepest roots can still 
be accessible to plants through capillary transport. 

Plant roots move water from wetter to drier layers. 
Such equilibration usually consists of hydraulic lift, 
the process of bringing water to the soil surface from 
deeper rooted layers, or downward siphoning, the pro-
cess of bringing fresh precipitation to deeper layers 
(Bayala et al., 2008; D’Odorico et al., 2010). Hydraulic 

Shallow root system in moist but nutrient poor tropical  
peatland forests in Kalimantan, Indonesia

Photo ©  Daniel Murdiyarso
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equilibration by forests and trees is most effective at 
night when stomata are closed and transpiration has 
stopped (Bayala et al., 2008; Prieto et al., 2012). In this 
way, water can rehydrate drier zones connected by a sin-
gle root system (Manoli et al., 2014), but can also leak 
out of roots in dry soils and be captured by roots of other 
species, as has been demonstrated with isotopic tracer 
experiments (Caldwell et al., 1998). Estimates of the ex-
tent of hydraulic redistribution of water by trees vary 
by nearly two orders of magnitude and depend on the 
combination of root architecture, soil physical proper-
ties, and gradients in water potential in the rooted part 
of the soil profile (Neumann et al., 2012). In temper-
ate and semi-arid environments, hydraulic redistribution 
can contribute 17-81% of water transpired (Sardans et 
al., 2014) and may account for up to 30% of transpired 
water on dry late summer days in seasonally dry and wet 
forests. It may also enhance seedling survival and main-
tain overstory transpiration during summer droughts 
(Brooks et al., 2002; Domec et al., 2010). Hydraulic 
redistribution has been documented in Amazonian rain-
forests (Oliveira et al., 2005), neotropical savannahs 
(Scholz et al., 2002), semi-arid shrublands (Ryel et al., 
2002), desert shrubs (Hultine et al., 2004), seasonally 
dry conifer forests (Domec et al., 2004), semi-arid sa-
vannahs (Barron-Gafford et al., 2017) and Sahelian agro-
ecosystems (Bayala et al., 2008; Kizito et al., 2012). 

Variation in root length density and rooting depth be-
tween tree species has direct relevance for soil moisture 
dynamics (Wilcox et al., 2011). As different species have 
different capabilities to explore soil layers, water out of 
reach for some species could still be available for oth-
ers (Hardanto et al., 2017). Through different root system 
architecture, different tree species sharing the same stand 
can avoid competition and complement each other, using 
water from different soil layers or at different times of 
the year (Xu et al., 2011; Forrester and Bauhus, 2016; 
González de Andrés et al., 2018). 

Water excess may be a problem for trees in some set-
tings. Trees in mangroves and peat swamps have adapt-
ed roots to enable them to maintain adequate supplies of 
oxygen and remove gases such as ethylene and methane. 
Stilt roots, pneumatophores and aerenchym are common 
adaptations in mangrove (Pi et al., 2009) and peat swamp 
forests (Farmer et al., 2011; Pangala et al., 2013). 

2.2.2 Forests, Soils and Climate:  
Sponge Effects

Forests and soils: a two-way relationship

Forests depend on soil, but also play a major role in soil 
formation by bedrock weathering, maintaining soil on-
site (reducing landslides and erosion), and capturing it in 
sedimentation sites. Globally there is major variation in 
the depth and nature of soils, even when the forests look 
similar, causing variation in hydrologic responses.

The depth of a soil profile, together with its texture 
and soil organic matter content, determine the ‘sponge’ 

effect (and its spatial variation) of buffering water avail-
ability within the reach of root systems. Forests influence 
soil formation and soil retention in the landscape (Brant-
ley et al., 2017). Soils, in turn, impact forest hydrology 
through retention of water, infiltration, percolation, soil 
moisture storage, release, erosion, sediment deposition, 
landslides, and as a medium for roots. Deforestation ef-
fects on streamflow depend on soil type, soil depth and 
terrain features that are often ignored when seeking ge-
neric patterns. Spatial information on subsurface hydrol-
ogy, added to remote sensing that has so far focussed 
on land cover, is currently filling a major research gap  
(McDonnell et al., 2018). 

Soil water storage capacity

Part of the literature and much of the modelling done to 
date rely on a ‘rooting depth’ concept that assumes all wa-
ter above a certain depth is available and all water below 
is unavailable to vegetation. This simplified approach as-
sumes that water below rooting depth will either exit the 
ecosystem as subsurface flow or recharge the groundwater 
stocks. Using this approach, it is possible to estimate the 
water storage capacity of the root zone (Wang-Erlandsson 
et al., 2016). In a recent drought in California, specific for-
ests where trees were found to have access to deep weath-
ered bedrock were found to remain green (Rempe and 
Dietrich, 2018). Using data from 300 diverse catchments 
in Thailand and the USA, Gao et al. (2014) estimated the 
effective soil moisture storage to vary from around 50 to 
500 mm, representing 25 to 250 days in which evapotrans-
piration rates of 2 mm/day can be sustained in the absence 
of precipitation or lateral inflows. Root-zone water storage 
capacity was reduced by logging in catchments with long-
term monitoring data, and took a decade or more after for-
est regrowth to recover (Nijzink et al., 2016).

Macroporosity and water infiltration

The soil’s infiltration capacity below the surface is influ-
enced by soil porosity. Porosity defines the spaces between 
soil particles and aggregates, and thus the two primary 
biotic influences, are soil aggregation (related to organic 
matter and fungal hyphae) and the balance between dis-
appearance and generation of macropores by roots and 
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soil macrofauna (‘engineers’) (Bünemann et al., 2018). 
In some regions, with porous soils and relatively low pre-
cipitation or snowmelt rates, almost all water infiltrates. In 
these regions, overland flow is generally not a considera-
tion, except where water has accumulated in the soil (e.g., 
at the base of hillslopes with shallow soils). In these places, 
soil saturation means that there is no room for more water 
to infiltrate, so all incoming water remains at the surface, 
creating saturation excess overland flow (potentially lead-
ing to flooding). In other regions, a combination of low 
infiltration capacity and/or high rates of precipitation can 
lead to infiltration excess overland flow which will contrib-
ute to flooding, with the risk of erosion. Overland flow at 
the soil surface – whether created by infiltration excess or 
saturation excess – does not contribute to subsurface wa-
ter storage, which can sustain both streamflows and plant 
growth during drier periods. It can, elsewhere, lead to ex-
cess soil moisture, waterlogging and vegetation dieback.

Soil moisture storage depends on the pore size distri-
bution of the soil. Very large pores (macropores) associ-
ated with roots, animal burrows, arthropods and earth-
worms are specifically sensitive to soil compaction but 
where present enable rapid infiltration and limit overland 
flow (Beven and Germann, 2013; Vereecken et al., 2016; 
Barrios et al., 2018); intermediate size pores (mesopores) 
associated with sand- to silt-size particles contribute to 
soil water holding capacity against gravitational drain-
age, and tiny pores (micropores) within organo-mineral 
aggregates or clay particles hold water very tightly. Dom-
inance of vertical (infiltration) or horizontal (interflow) 
processes can depend on pore distribution, but also on 
precipitation and season (Grayson et al., 1997). Tightly 
bound micropore water can be differentiated from mobile 
water that tends to enter the stream via ‘interflow’ and is 
taken up most readily after a rainfall event (Brooks et al., 
2010; Berry et al., 2017; Evaristo and McDonnell, 2017).

Coarse-textured (sandy) soils have low water storage 
capacity, but often high infiltration capacity, except where 
they develop water repellency and induce overland flows 
(Doerr et al., 2002). Fine-textured (clay and silt) soils 
have high storage capacity, but low infiltration capacity, 
except where cracks and biogenic macropores develop. A 
soil with a wide range of pore sizes has both high infiltra-
tion and high water storage capacity. In many landscapes 
the most agriculturally suitable soils have been converted 
and forests are left on the less favourable sites. 

Loss of forest cover and forest disturbance generally 
reduce the capacity of soils to absorb and retain moisture. 
In the short term, forest harvest or forest removal can lead 
to macropore enlargement as roots decompose, facilitat-
ing infiltration (van Noordwijk et al., 1991; Noguchi et 
al., 1999), but subsequent collapse of macropores without 
new ones being generated reduces infiltration rates and 
increases overland flow. High runoff from bare patches 
combined with high interception and infiltration by shrubs 
or trees effectively partitions scarce soil moisture among 
plants in patchy dryland vegetation (Crockford and Rich-
ardson, 2000; Llorens et al., 2011; Li, 2011; Maestre et 
al., 2016), creating ‘resource islands’ (Roberts and Jones, 
2000). Positive tree influences on soil macroporosity and 

infiltration can last years or decades after the tree has died 
(Ilstedt et al., 2007; 2016). 

Litter layer and overland flow

Once precipitation water passes through the tree canopy it 
encounters a critical interface at the litter/soil layers. Here, 
partitioning occurs between that water which infiltrates 
further downward into the soil, and that which does not. 
The ratio between the rate at which water reaches the soil 
surface (throughfall or snowmelt) and the rate at which the 
soil allows water to infiltrate determines this partitioning. 
Litter is composed of decaying leaves and needles, but also 
fungi (including mycorrhizal hyphae), soil arthropods, and 
earthworms, whose activities produce organo-mineral ag-
gregates. Roots, animal burrows, arthropods, and earth-
worms create macropores, which in turn promote rapid 
water infiltration and limit overland flow (Barrios et al., 
2018). In the short term, the presence of a litter layer is a 
store of water, and it also protects soil surfaces from the 
erosive capacity of direct rain droplet impacts (Hairiah et 
al., 2006). Where litter layers are dependent on trees, re-
duction of soil evaporation will partially offset increased 
transpiration (Wallace et al., 1999). In the longer term, 
the contribution of litter to soil organic matter will influ-
ence both infiltration capacity and porosity. Litter removal 
and grazing reduce infiltration rates and increase overland 
flow (Ghimire et al., 2014a). Forest and tree presence is a 
pre-requisite for the existence of litter, but the tree charac-
teristics (e.g., species composition, age class distribution, 
tree density and deciduousness) as well as management ac-
tivities (e.g., timber harvesting and under-canopy burning) 
also influence the properties of the litter layer in relation to 
how much accumulates, hydrophobicity and carbon pools 
(Paul et al., 2002; Bargués Tobella et al., 2014). 

Soil litter layers and associated surface infiltration rates 
can be restored quicker than the organo-mineral aggre-
gates, root channels and soil biota of the upper soil layers 
that are needed in larger rainfall events. Recovery of in-
terflow will depend on soil macroporosity rather than sur-
face characteristics and will take longer (Bruijnzeel, 2004; 
Ghimire et al., 2014b). The time frame (e.g., years, dec-
ades) at which forestation (used here to refer to an increase 
in tree cover, regardless of previous landuse, methods or 
species used) can restore soil infiltration capacity remains 
an active research frontier (Ghimire et al., 2014b), with a 
range of site-specific results (Marín-Castro et al., 2017; 
Qazi et al., 2017; Zwartendijk et al., 2017).

Groundwater

Near-surface water – also called water table – is dynamic 
and is affected by biotic (e.g., vegetation type, leaf area, 
rooting pattern) and abiotic factors (e.g., precipitation 
timing, intensity, and amount; air and soil temperature). 
It can be an important contributor to the water supply at 
all temporal and spatial scales (Issar and Simmers, 1990; 
Lerner et al., 1990). Aquifer water, beyond the reach of 
current vegetation, on the other hand is typically con-
sidered to be reflecting a much longer history (‘fossil’; 
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decades to millennia) of recharge, having a composition 
that is often isotopically different to near-surface water. 
Near-surface water can be indirectly affected by aquifer 
water if there is hydrological contact between the two. 
If aquifer water is used for human activities, the water 
enters the dynamic hydrologic cycle while the aquifer 
from which the water originates may be permanently 
reduced or depleted (Custodio, 2002; Konikow, 2013). 
Lateral groundwater flow, which is generally simpli-
fied or excluded in Earth system mo dels, is important 
in many landscapes and may provide a missing link for 
reconciling observations on stable isotope patterns and 
global models of terrestrial water fluxes (Maxwell and 
Condon, 2016).

2.2.3 Atmosphere, Oceans and Terrestrial 
Vegetation: Global Water Fluxes

Global water cycle

The hydrologic cycle has been described as such for 
hundreds of years (Box 2.2), but most of hydrology has 
been based on the perspective that incoming precipitation 
is seen as an external variable rather than a variable that 
both influences and is influenced by vegetation.

Two and a half percent of the world’s water is freshwa-
ter, with the largest proportion of freshwater existing in 
glaciers and permanent snow (Shiklomanov, 1999). Wa-
ter available in streams, rivers, lakes, (surface and sub-
surface beyond reach of root systems) and reservoirs is 
considered blue water and has been the historical starting 
point of hydrology. However, on average, only about 35% 
of precipitation becomes blue water, with the other 65% 
used on-site by vegetation as green water (Falkenmark 
and Rockström, 2004; 2006). Blue water can be used for 
irrigation, drinking water or industry, while green water 
is used by plants for production of biomass (Sood et al., 
2014). Recently the term ‘rainbow water’ has been sug-
gested as atmospheric moisture, which is the source of 
all blue and green water, and the direct destination of all 
evapotranspiration (van Noordwijk et al., 2014a).

Partitioning of precipitation over streamflow (‘blue 
water’ – integrating overland, interflow and groundwater-
based pathways) versus evapotranspiration by vegetation 

(‘green water’), and the subsequent use of blue water 
downstream were the primary concern for science as 
well as practitioners. While it is hard to imagine how 
a national economy would be managed if it considered 
only monetary flow rather than a monetary cycle, the 
full hydrologic perspective has been slow to emerge in 
quantitative studies. The last two decades have seen ma-
jor progress, however, facilitated by global data sets that 
reconcile measured atmospheric moisture flows, precipi-
tation and evapotranspiration, supported by models to fill 
gaps (Trenberth et al., 2011). These datasets themselves 
are subject to improvement and refinement (van der Ent 
and Tuinenburg, 2017), but allow direct comparisons 
of atmospheric moisture concentrations, air movement 
(wind), precipitation and evapotranspiration, over oceans 
as well as land. 

Water cycle, forest-climate 
relationships and desiccation 
theory
Around the time William Harvey clarified blood circula-
tion in the human body (1628), the study of plants found 
water to move mostly from the roots in the soil to the 
leaves where it evaporated. It was clear that water in 
the soil derived from rainfall, but where did the rain 
originate? The physics of evaporation and condensation 
made clear that water vapour, although invisible, was the 
‘missing link’ in the hydrologic cycle, but how far and 
how long did it travel as water vapour before returning 
as rainfall? The idea of a hydrologic cycle composed of 
a ‘short cycle’ (over land) and a ‘long cycle’ (involving 
oceans) was born (Perrault, 1674; Nace, 1975).  Around 
1693, the astronomer Edmond Halley asserted that 
evaporation from the oceans was sufficient to explain 
all rainfall, strengthening the case for the ‘long cycle’. 
Stephen Hales (‘Vegetable Staticks’ 1727) quantified 
transpiration, leaf areas and root lengths, and consolidat-
ed the understanding of plants as part of the hydrologic 
cycle.  Around the same time, John Woodward started 
to link vegetation and climate through the hydro-
logic cycle. This became the basis of the ‘desiccation’ 
theory (Grove, 1996). In the 18th century, the effects 
of deforestation on small islands (St Helens, Mauritius, 
Tobago) used as stop-overs in the Asian-Europe trade 
became clear: rainfall was affected.  A speech by Pierre 
Poivre in 1763 in Lyon may well have been the start of 
widespread climatic concerns over human impact on 
(tropical) forests. While widespread forest clearance 
by European settlers in temperate North America was 
seen by them as climate improvement, replacing damp 
air by healthier drier air, similar effects in the tropics 
were seen as negative and forest protection policies 
started in Mauritius found their way in the French and 
English colonial expansion in the tropics (Grove, 1994). 
The desiccation theory became part of the discourse in 
Africa, undergoing drastic changes after its incorpora-
tion in the colonial world, as documented by Endfield 
and Nash (2002). A specific form of the desiccation 
theory became the basis of explanations for the histori-
cal decline of land productivity in the Middle East, cradle 
of cereal-based agriculture (Kubat, 2011).
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Short and long cycle rain

The short cycle only involves terrestrial systems and the 
atmosphere (Figure 2.3). In contrast, the long cycle in-
cludes atmospheric moisture that is derived from both 
terrestrial and ocean sources. Current understanding of 
the global cycling of water between atmosphere, oceans, 
and land areas is based on a combination of data on 
evapotranspiration, precipitation, air movement, and the 
presence of ‘precipitable water’ (Bosilovich et al., 2002; 
2011; Trenberth et al., 2003; Dirmeyer et al., 2009; Gime-
no et al., 2012). Uncertainty around the long-term aver-
age values for the global balance is within a few percent 
of the estimates provided, as a number of different models 
used in combination with empirical data provide similar 
results (van der Ent and Tuinenburg, 2017). 

The higher the rate of evapotranspiration, the more a 
land area contributes atmospheric moisture to the short 
cycle. Land covers that excel in this function include open 
water, wetlands, irrigation agriculture, and forests (Ong et 
al., 2015). On average, forests on sufficiently deep soils 
can be expected to match the potential evapotranspiration 
of a site to the degree that precipitation allows, with lit-
tle loss to rivers until this potential is reached. In other 
vegetation, part of rainfall comes in amounts that can-
not be immediately absorbed by the soil and flow into the 

river, while vegetation may not be present throughout the 
year and shallower roots cannot fully use the soil reserve 
(Black et al., 2015; Bayala and Wallace, 2015). On aver-
age, the difference between forests versus other vegeta-
tion was estimated by Zhang et al. (2001) to be around 
200 mm/yr. Spracklen et al. (2012) showed that rainfall 
is statistically associated with passage of air masses over 
forest in the days preceding a rainfall event, with the spe-
cific mechanisms still subject to debate (Spracklen and 
Garcia-Carreras, 2015).

Precipitationsheds

Watersheds are the land areas that contribute water to a 
given river, considering precipitation as the start of a flow 
(rather than cycle). Starting one step earlier in the cycle, 
precipitationsheds are the upwind surfaces of the Earth 
(whether oceans or land areas) that provide evaporation 
that later falls as precipitation in a given location (for ex-
ample, a watershed). The source of atmospheric moisture 
responsible for, say 95%, of precipitation in a specified 
location (a point, a catchment, a nation or a region) pro-
vides an operational definition of these precipitationsheds 
(Keys et al., 2012), with recent specifications provided for 
countries and regions (Keys et al., 2017; Wang-Erlandsson, 
2017). The precipitationshed of a watershed is considerably 

Global water balance
Based on global data averaged over at least ten years, 
Figure 2.3 suggests a net ocean-to-land transfer of around 
45,000 km3/year balanced by a similar return flow of 
rivers and groundwater into oceans.  As the annual pre-
cipitation over land is around 120,000 km3/year, the net 
contribution of terrestrial evapotranspiration to terres-
trial precipitation is, on average (120 - 45)/120 = 75/120 
= 63%. If one would be able to ‘tag’ the water molecules 
from the two sources (land and ocean) of evapotran-
spiration (which isotope analysis allows only to a very 
approximate degree) one may find that the fraction of 
precipitation most recently derived from land rather than 
oceans varies between 13% (if atmosphere is fully mixed) 
and 63% (if there would be no land to ocean transfer of 
atmospheric moisture). The relevant point is that an aver-
age water molecule crossing the ocean-to-land boundary 
in the atmosphere may fall 2.7 (120/45) times as precipi-
tation over land, once as original (‘long cycle’) rainfall plus 
1.7 (2.7-1) times as terrestrially recycled (‘short cycle’) 
rain, before flowing back to the ocean in a river. There is 
no compelling reason why this is not either more (which 
would imply more rainfall) or less (less rainfall), even if 
the conditions of the oceans do not change. This is the 
core of the ‘hydrologic space’ argument posed by Ellison 
et al. (2012).

A first estimate of the global mean residence time is 
obtained by dividing the time-averaged stock of precipi-
table water (i.e. 12,000 km3) by the mean daily average 
precipitation (530,000/365 km3/day), yielding 8.2 days. 
Spatial variation around this average has been mapped 
(van der Ent and Tuinenburg, 2017), with a more accurate 
global mean of 8.9 days as current estimate. There is how-

ever some uncertainty in this conceptual model and its 
numerical results, linked to assumptions about the degree 
of layering of atmospheric transport. 
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larger than that watershed itself, and typically contains 
some part of the global oceans plus parts of one or more 
terrestrial watersheds (Figure 2.4). For example, watershed 
3 in Figure 2.4 can contribute water to watershed 2, but its 
precipitationshed can include the ocean plus watersheds 1, 
2 and 3. Thus, shifting the question from “what happens 
to the precipitation that a watershed receives?” to “where 
does this precipitation originate?”, and hence “what factors 
might influence variability and trends?”, implies a much 
stronger regional and global dependence and influence of 
forest-water relations.

The size of precipitationsheds depends on wind speeds 
and residence times of atmospheric moisture. As shown 
by van der Ent et al. (2010), depending on the location 
relative to global circulation patterns and the shape and 
size of continents, terrestrially evapotranspired water has 
a probability of returning as rainfall over land that var-
ies between 0 and 100%. For any given location the un-
certainty in this estimate is relatively small (van der Ent, 
2010). Similarly, the percentage of rainfall in any location 
derived from terrestrial rather than oceanic sources var-
ies from 0 to 100% with location, but uncertainty of the 
location-specific estimate is small. 

Prevailing winds together with atmospheric residence 
time determine moisture recycling (van der Ent, 2014; van 
Noordwijk et al., 2014a; Ellison et al., 2017). The net trans-
port distances of atmospheric moisture during a mean resi-
dence time of around eight days vary from less than 100 
to several thousand kilometres. Strong short cycle precipi-
tation in the Amazon and Congo basins and on the large 
island of Borneo is associated with low wind speeds1.1

The telecoupling (or spatial dependency of processes) 
that is quantified in a precipitationshed has geopolitical 

11 		This	can	be	verified	for	any	part	of	the	world	at	any	day	on	a	website	such	as	www.windy.com	for	wind	speeds	at	a	standard	height	of	80m	
above the land surface.

implications that only recently have been explored from 
a policy perspective (van der Ent et al., 2010; van Noord-
wijk et al., 2014a, 2016; Ellison et al., 2017; Keys et al., 
2017). These are discussed further in Chapter 7. 

Vegetation effects on precipitation

Satellite observations and atmospheric trajectory mod-
elling increasingly permit research to disentangle the 
origin and immediate drivers of growing-season precipi-
tation, and the extent to which ecoregions themselves 
contribute to their own supply of rainfall (van der Ent 
et al., 2010). While the amount of water recycled varies 
between wet and dry years, the recycling ratio increas-
es in dry years (e.g., Miralles et al., 2016). For exam-
ple, as much as 25% of basin-evapotranspired moisture 
may be recycled within the Congo basin (Dyer et al., 
2017), with further rainfall occurring elsewhere. Re-
cent analysis of rainfall records for Borneo (McAlpine 
et al., 2014) showed that watersheds with >15% forest 
loss had a >15% reduction in rainfall, as maritime influ-
ences are limited and measured wind speeds low. Weng 
et al. (2018) identified parts of the Peruvian Amazon 
and western Bolivia as the atmospheric moisture sink 
areas most sensitive to land use change in the Amazon.  
Water tagging studies indicate that continental recy-
cling of water explains more intraseasonal variations in 
moisture in inland areas than in coastal areas (Risi et al., 
2013). In the Amazon, rainforest transpiration enables an 
increase of shallow convection that moistens and destabi-
lises the atmosphere during the initial stages of the dry-
to-wet season transition, which drives moisture conver-
gence and wet season onset 2-3 months before the arrival 

Conceptual model of the water balance along a series of spatial units following 
the prevailing winds from an ocean-land interface 
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of the Intertropical Convergence Zone (ITCZ) (Wright et 
al., 2017). 

Variation in precipitation and the frequency of extreme 
events is likely to be as important as the annual mean 
precipitation. Degu et al. (2011) described cases where 
the construction of manmade reservoirs induced local ex-
treme rainfall with negative effects. Such extreme events 
may be related to a relative scarcity of rainfall triggering 
agents – as the presence of these would induce more fre-
quent and moderate precipitation rather than cloudbursts. 
This, however, represents the frontier of current science, 
as it requires atmospheric physics, chemistry, biology, 
and particle transport to be reconciled with global circu-
lation models.

Human modification of the global water cycle

Humans modify the hydrologic cycle through the with-
drawal of blue water for agricultural (92%), domestic 
(4%), and industrial (4%) uses from lakes and rivers 
(Hoekstra and Mekonnen, 2012). Partly to support these 
abstractions, humans affect the flow of water in the land-
scape through the construction of reservoirs for hydro-
power, flood control and irrigation. In addition, humans 
modify the hydrologic cycle through land use/land cover 
change. Human use of river flow in many cases (most di-
rectly in case of water abstractions for agriculture) leads 
to further evapotranspiration, making the blue versus 
green water partitioning (Falkenmark and Rockström, 
2006) highly scale dependent.

Many human activities based on water use do not lead 
to evaporation but to impaired water quality, as described 
in the grey water footprint (Hoekstra and Mekonnen, 
2012). This involves both point sources of pollution (e.g., 
industry or residential wastewaters) and diffuse sources 
of pollution (e.g., agricultural chemical and erosion loads 
to water). New insights on human influence on precipita-
tion through land cover change, have yet to be incorpo-
rated in such footprint estimates.

2.2.4 Precipitation, Evapotranspiration and 
Discharge:  Water Balance and Buffering

Linking ecosystem structure and function 

At the scale of a patch of land, the hydrologic cycle is re-
flected by three long-distance, one-way fluxes (precipita-
tion, evapotranspiration and contributions to streamflow) 
and local two-way exchanges with water stored in soils, 
plants and/or snowpack. Four key ecosystem structure at-
tributes (leaf area index, rooting depth, litter layer and 
soil macroporosity) determine vegetation effects on flow 
pathways, buffering and flow regime via the basic water 
balance equation (Box 2.4).

Scale and scaling

Paired-watershed experiments (Box 2.5), which test the 
effect of forest conditions on hydrology, are typically con-
ducted in small watersheds, usually less than 100 km2. 

Paired watershed experimental 
studies as gold standard of  
forest hydrology
Paired watershed experimental studies became key 
to the development of forest hydrology as a science, 
a century ago. Typically, data collection on at least two 
similarly-sized watersheds starts a few years before a 
major intervention is applied to one of the watersheds 
(i.e., the calibration period) with the other serving as a 
control.  The response is monitored for as long as it takes 
until the difference in hydrologic response between the 
sub-catchments has disappeared. Data from paired water-
shed experiments have been mostly obtained in temper-
ate moist climate zones (e.g., Hibbert, 1967; Bosch and 
Hewlett, 1982; Andreassian, 2004; Jackson et al., 2005). 
Where sets of paired watershed experiments have been 
compared over time with various treatment intensities, 
short-, medium- and longer-term effects of forest change 
on water yield have been attributed to changes in the 
E and �S terms of the water balance equation (Scott et 
al., 2000; Webb et al., 2012). Critiques of existing paired 
watershed studies often refer to the absence of ‘mosaic’ 
effects, where treatments are applied uniformly while 
in the real world many intermediate degrees of tree 
cover or mosaics are expected. The results from paired 
watershed experiments cannot be directly applied in 
large watersheds (>1,000km2), as several scale-dependent 
processes need to be factored in. 

Box
2.5

Water balance equation
The water balance equation is:

Q = P - E - �S 

where Q = streamflow, P = precipitation (including rain, 
snow, cloud water interception), E = evapotranspira-
tion, and �S = change in water storage. P, E and Q are 
expressed as depth (mm) per unit of time (day or year). 
�S can, depending on context, be split into �SS (change in 
soil water), �SN (change in snow and ice water stor-
age, where snowfall is part of P), and �GWS (change 
in groundwater stores). The change in water storage in 
plants (�SP) may be non-negligible (Dietrich et al., 2018). 
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Recent advances in ecohydrology include scaling wa-
ter fluxes from the leaf to the watershed and landscape, 
the effects of plant-soil interactions on soil moisture, and 
the influence of plant water use on streamflow regimes 
(Asbjorssen et al., 2011). Conceptually, studies of forests 
and water connect spatial scales from the leaf to the globe, 
and temporal scales from hours to multiple decades. Spa-
tial scales of interest range from hillslopes and forest 
stands (0.001-0.1 km2), to forest management units and 
small watersheds (0.1 to 10 km2), meso watersheds (10 
to 1,000 km2), large watersheds (1,000 to 10,000 km2), 
regions (10,000 to 1,000,000 km2), and to continents and 
the globe. Reaching numerical agreement across scales is 
challenging (van Noordwijk et al., 2004, 2015d). 

Annual means of precipitation, evapotranspiration, 
and streamflow may scale with area, but peak flows (de-
fined as the “maximum instantaneous discharge of a given 
stream”) have been found to scale with area to the power 
0.7 (Rodríguez-Iturbe and Rinaldo, 2001) or 0.8 (Lin and 
Wei, 2008). Peak flows relative to mean flows decline with 
area: for an area that is 10 times larger, the mean flow 
will be 10 times larger, but the peak flow is expected to 
be five (equal to 10 to the power 0.7) times larger, so the 
peak-to-mean ratio halves. The scaling parameter (and its 
variation across landscapes) reflects both flow buffering in 
larger watersheds (with greater likelihood of riparian wet-
lands beyond head catchments) and spatial correlation of 
peak rainfall events (high for frontal rains, low for thunder-
storms). Flood risks and its determinants strongly depend 
on scale of consideration (van Noordwijk et al., 2017a). 

There have been many attempts to develop scale 
transfer functions, clarifying scaling rules for hydrologic 
variables and hydrologic effects across different sized 
watersheds (Blöschl and Sivapalan, 1995; Hrachowitz 
et al., 2013). Gupta and Waymire (1990) introduced the 
concepts of simple scaling (e.g., area-based or scale-in-
dependent fractal rules) and multi-scaling (more complex 
scale-dependent rules) to describe spatial structures of 
rainfall and floods (Blöschl and Sivapalan, 1995). Gupta 
and Dawdy (1995) showed that floods exhibit simple scal-
ing in snow-dominated watersheds and multi-scaling in 
rain-dominated watersheds. 

Evaporation versus transpiration 

In the absence of a litter layer, soil evaporation can be a 
significant part of total evaporation in some forest types 
(Raz-Yaseef et al., 2010). At the forest stand and watershed 
scales it is difficult to distinguish evaporation from soils or 
intercepted canopy moisture from transpiration, but at the 
global scale this has been recently accomplished by com-
bining water balance and isotope data. Globally, across 
all vegetation types, transpiration has been estimated to 
be 64 ± 13% of evapotranspiration (Good et al., 2015). 
Stand- and watershed-scale studies of water isotopes im-
ply different cycling and terrestrial retention times of wa-
ter involved in transpiration compared to streamflow (e.g., 
Evaristo et al., 2015), but such studies have not yet been 
paired with water quantity measurements to close the water 
balance. Only 38 ± 28% of surface water is derived from 

the plant-accessed soil water pool (Good et al., 2015), with 
the remainder reaching streams by overland flow, but these 
numbers are likely differentiated by land cover type. 

2.2.5 Dynamic Landscape Mosaics: Streamflow

Flow regimes as landscape signature

Most forest hydrologic studies focus on understanding 
the response of homogeneous forest patches to specific 
treatments, but the reality is that land cover dynamics 
involve complex space-time patterns of roads, forest 
conversion, partial recovery of secondary forests, inten-
sified agriculture, plantations and urbanisation. 

The spatial pattern in land cover also matters for sur-
face and subsurface lateral flows, modifying streamflow 
regimes (water quantity, quality, regularity of flow). The 
black-and-white language of ‘deforestation’ and ‘refor-
estation’ does not do justice to the many intermediate situ-
ations that influence streamflow in complex ways. Land 
cover transitions (e.g., the loss of natural forest and the 
subsequent return of trees – planted, spontaneously estab-
lished and not removed, or spared during land clearing) 
matter for the four ecosystem structure attributes (LAI, 
roots, litter, soil porosity), with different response times 
for above-and belowground changes. 

Forest (tree cover) transitions

Forests and tree cover are part of a three-dimensional 
space, where climatic zones and topography interact with 
an anthropogenic forest transition (Dewi et al., 2017). 
Many natural forests are converted, frequently to more 
open agricultural land cover types, but trees can come back 
(Meyfroidt and Lambin, 2011), either under pressures of 
‘push’ (increased value of trees used in plantations or as 
part of agricultural and urban land use mosaics) or ‘pull’ 
(urbanisation, land abandonment). Under a ‘push’ scenar-
io, most of the new trees may be planted, whereas under the 
‘pull’ scenario, most of the trees will be secondary forests 
with spontaneously established trees (among which inva-
sive exotic species may compete with native pioneer trees) 
(Ordonez et al., 2014). 
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The usual binary classification of land cover into forest 
versus non-forest, which is used in many studies of forest 
effects on water, obscures both the effects of forest quali-
ty and the effects of spatial arrangement of forest within a 
watershed, especially in landscapes where swidden/fallow 
(or secondary forest) cycles are subject to segregation of 
‘forest’ and ‘agriculture’ (Malmer et al., 2005; van Noor-
dwijk et al., 2012a, 2015b). For example, any possible 
flood-mitigating effects of forest expansion and growth 
in the headwaters of a large watershed were overwhelmed 
by agricultural intensification from the traditional swid-
den-fallow system in the lower reaches of the Huong ba-
sin in Vietnam over the period 1989 to 2008 (Figure 2.5), 
which experienced a statistically significant increase in 
the highest yearly flood peak in the lowland. Hence, the 
spatial distribution and character of forest and tree cover 
influence hydrologic behaviour in large watersheds, with 
conditions of the land outside the forest at least as import-
ant as that inside remaining forest. Concepts, as specified 
in the Indonesian spatial planning law, that 30% of forest 
is needed to guarantee watershed functions, regardless of 
what happens in the other 70% of land, have little empir-
ical basis, even when occasional studies seem to confirm 
the 30% estimate (Tarigan et al., 2018).

Special forest niches

Beyond bioclimatic zones, topography is an important 
determinant of ecosystem structure and hydrologic func-
tion of forests and tree cover. Specific forests of interest 
include the following: 

Water towers 
Water towers are found at high altitudes and are areas 
where the ratio of precipitation to evapotranspiration is 
sufficiently high to generate streamflow.  They are often 
the primary source of streams on which life in lower and 
drier zones depends (Viviroli et al., 2007). Tropical water 

towers tend to have relatively high human population den-
sities and rates of forest conversion (Dewi et al., 2017); 
they thus are hotspots of conflict over water. 

Cloud forests
Cloud forests – often the mountain tops of water towers 
– have a special place in forest hydrology as the vegeta-
tion plays an active role in trapping moisture from clouds, 
attaining higher precipitation than measured by standard 
rainfall gauges (Bruijnzeel et al., 2011). A recent study 
of cloud forests in Colombia, however, suggested that 
low evaporation due to foggy conditions is a key part of 
streamflow generation (Lawton et al., 2001; Ramírez-
Correal et al., 2017a,b), making the continued function-
ing of such forests dependent on evapotranspiration of 
adjacent lowlands.

Wetland and riparian forests
For wetlands and riparian forests, factors that control 
the surface and subsurface flows of water may be at 
least as important as local precipitation in determining 
water availability to plants. This includes the large sea-
sonal floodplains of the Amazon basin and smaller parts 
of many other river systems. Where wet conditions are 
permanent, peat forests may form based on trees with suf-
ficient root adaptations to live in a permanently anaero-
bic environment. Wetlands and riparian forests can have 

The swidden-fallow mosaic landscape in Xishuangbanna of 
China has been replaced by monoculture rubber plantation

Photo © Xiaobao Han
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expansion of agriculture in the 
lower portions of the basin (up-
per part of map) exacerbated 
flooding over the period

Figure
2.5

Source: Redrawn from Tran et al., 2010
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an important flow-regulating effect on downstream river 
behaviour, as long as their water table level is allowed 
to move up and down. With conversion to agriculture or 
urban areas, changing water table levels become problem-
atic and engineering solutions externalise the variability, 
implying a loss of flow buffering functions.

Vegetation around springs and wells
Due to obvious relations with water quality and public 
health, the vegetation around springs and wells has been 
protected by locally-developed resource use rules in many 
parts of the world with national legislation usually formal-
izing such rules (Galleani et al., 2011; German et al., 2013).

Mangroves
Along marine coastal zones, a specially adapted tree flo-
ra forms mangroves (see Box 2.8), providing flood and 
storm surge protection of the hinterland (Bayas et al., 
2011), mitigating sea level rise and coastal erosion, as 
well as being a spawning ground for coastal fisheries or 
protecting other important ecosystems, such as seagrass 
and coral reefs.

Small island forests
On small islands, limited fresh groundwater impacts wa-
ter availability for forests, agriculture and people (White 
and Falkland, 2010), making them especially vulnerable to 
climatic variability. Small island states have been strong 
advocates of global climate change mitigation, and they 
also are at the forefront of adaptation discussions (Duguma 
et al., 2014). For example, the Tobago Main Ridge Forest 
Reserve (proposed as a UNESCO World Heritage Site)2 is 
on record as the oldest legally-protected forest reserve es-
tablished specifically for water conservation purposes. It 
was established on April 13th, 1776 by an ordinance which 
states, that the reserve is “for the purpose of attracting fre-
quent showers of rain upon which the fertility of lands in 
these climates doth entirely depend.” 

Trees outside forest
With 43% of the world’s agricultural lands having at least 
10% tree cover3 (Zomer et al., 2016), the roles that these 
trees play for the local economy, as well as for the wa-
ter balance and local climate, deserve attention (Ong et 
al., 2015). Agroforestry has seen a growing recognition 
that land use at the interface of agriculture and forestry 
has much to offer to sustainable development concepts  
(Garrity, 2004; Prabhu et al., 2015).

Urban trees
Trees and other vegetation in urban areas are essential for 
rainfall infiltration and storm surge abatement. They func-
tion as air conditioners, cooling surrounding air by produc-
ing latent heat through transpiration. This ecosystem ser-
vice per unit biomass may be as high as that of the sparse 

2	 	https://whc.unesco.org/en/tentativelists/5646/
3	 	Within	the	global	climate	convention	countries	were	asked	to	specify	their	tree	cover	threshold	(between	10	and	30%)	to	be	used	in	

distinguishing forest from non-forest

trees in dry zones. The mechanical instability of urban trees 
(due to limitations to root development and functioning) is 
a problem, and the selection of suitable trees for urban en-
vironments is a specialised field of science (Pokorny et al., 
2003). Perennial climbers on walls may combine the posi-
tive roles of a high leaf area index, with the absence of tree 
and branch fall risks (Alexandri and Jones, 2008); green 
walls as complements to urban trees have become popular, 
for example, in Singapore (Magliocco, 2018).

2.2.6 Land and Water Use Rights, Local 
Knowledge and Forest Institutions: Land-
scapes

Local rights and forest institutions 
The forest (tree cover) transitions described and analysed 
as statistical phenomena with hydrologic consequences 
in the preceding system level are in fact a consequence 
of complex interactions between social and ecological as-
pects of a dynamic interaction that changes people as well 
as landscapes.

Rights, conflicts, multiple knowledge systems, the 
emergence of forest institutions of various types, all con-
trolling what individual actors can or cannot do to forest 
and tree cover (Freeman et al., 2015), indirectly influence 
streamflow regimes (van Noordwijk et al., 2015e). In the 
history of land use change, evolving local institutions on 
forest and water use rights have restrained private bene-
fit maximisation, often progressing from ‘first come, first 
served’ rules towards collective action, stewardship and 
shared responsibility. In many countries, state-based forest 
use rights (‘concessions’) have been applied without refer-
ence to local or traditional rights.

The historical evolution of forest institutions in relation 
to local rights has reflected issues of national security (in-
cluding shipbuilding, navigable rivers, accessible ports), 
economic gain (logging), watershed protection (depending 
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on downstream interests), biodiversity protection and con-
servation, and recreation, with shifts in the public-private 
balance of power. Conflict resolution, more participatory 
forms of forest management and transparency of landscape 
resource monitoring have changed the forest-water relation 
over time and its role in national development strategies.

Water and forest rights

Water is among the resources with the longest history of 
clarifying public, club, and collective rights and respon-
sibilities. At the most basic level of rights, there is a con-
cept of ‘settler rights’, where the first to claim establishes a 
long term right, and a ‘riparian right’ where all those with 
land bordering a stream or lake have collective rights and 
responsibilities to share and manage the resource. Given 
their military importance, navigable rivers have been 
claimed by states from the start of codified law. In the es-
tablishment of ‘forests’ as a state resource, the concept of 
‘terra nullius’ (land without settler rights) provided the op-
portunity, while public concern over water flows became 
a justification (Williams, 2003; Galudra and Sirait, 2009). 
With many post-independence nations inheriting strong 
‘state’ claims from indigenous peoples, conflicts have oc-
curred over what are ‘club’ collective rights, versus ‘state’ 
prerogatives. In subsequent ‘privatisation’ of state claims 
of resources, e.g., through concessions for water use or 
drinking water distribution, a new arena for conflicts was 
opened (Boelens, 2009). 

Schlager and Ostrom (1992) in their foundational anal-
ysis described five property rights with respect to natu-
ral resources: the right to access, the right of withdrawal, 
the right of management, the right of exclusion, and the 
right of alienation. Recent stocktaking (Galik and Jagger, 
2015) of progress in the understanding of property rights 
added a sixth category (the right to alter) to those defined 
by Schlager and Ostrom. Regulating the right to alter land 
cover and land use is central to efforts to manage public 
functions of water, alongside private rights to ‘harvest’ and 
‘manage’. A delicate balance exists in water resource man-
agement between plot-level issues that are better handled 
with private tenure security versus those that require col-
lective action at the levels of streams and rivers (Swallow 
et al., 2001). This has become an important issue in South 
Africa, where the introduction of licences for ‘stream flow 
reduction activities’ were introduced to control large scale 
plantation activities and their downstream impacts (Gush et 
al., 2002). Climate change provides a new complication at 
the public/private interface where forest and water resourc-
es are involved. 

Local and traditional knowledge

Traditional knowledge is typically transferred between 
generations as part of local culture, whereas local knowl-
edge can be accumulated by a person or community 
merely by experiencing local conditions for a period of 

4  http://science.sciencemag.org/content/359/6373/270/tab-e-letters 

time. Both can involve component (ethnobotany, ethno-
zoology) and explanatory knowledge (Joshi et al., 2004). 
There is an inextricable link between traditional ecologi-
cal knowledge systems and forest-water interactions that 
emerges from historic ties to cultural landscapes (Xu et 
al., 2009). For example, many ‘globally important agri-
cultural heritage sites’ from the Andes and Asian high-
lands show the complex but coupled linkage between 
the forest-village-terraced-rice paddy and river systems 
(Camacho et al., 2010; Jiao et al., 2012) involving local 
world views, knowledge systems, norms and institutions, 
trials and innovations, teaching and learning. Various 
government policies and the expansion of regional and 
global markets play important roles in shaping the land-
scape and associated cultural influences (Xu and Grum-
bine, 2014a). More recently, there has been considerable 
discussion on ways to integrate local knowledge with 
government policies for managing forest-water interac-
tions (Jeanes et al., 2006; Xu, 2011; Rahayu et al., 2013; 
Leimona et al., 2015b). 

2.2.7 Social-Hydrological Systems: Ecosys-
tem Services as Valued Human Benefits 

Typology of services

The Millennium Ecosystem Assessment (MEA, 2005) has 
popularised a classification scheme of ecosystem services 
that is based on the type of human benefits (provisioning, 
regulating, cultural, supporting) that are derived from func-
tioning ecosystems (De Groot et al., 2002; see Chapter 5).

Both the anthropocentricity of the definition of eco-
system services and the association with economic rep-
resentation of value and proposed alternative concepts 
used in the Intergovernmental Science-Policy Platform 
on Biodiversity and Ecosystem Services studies have 
become the subject of intensive debate4 (Tomich et al., 
2010; Pascual et al., 2017; Diaz et al., 2018; Braat, 2018;  
Peterson et al., 2018). Yet, the ecosystem services con-
cept has sparked new ways of combining rule-based ap-
proaches with economic incentives. Such incentives may 
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‘nudge’ (Thaler and Sunstein, 2008) land use decisions, 
rather than impose them. Wunder (2015) differentiated 
payments for ecosystem services from regulation-based 
(command-and-control) efforts to protect and enhance 
ecosystem services by emphasising that payments for eco-
system services are a realistic, voluntary, and conditional 
contracts between at least two parties. In practice, a balance 
between ‘efficiency’ and ‘fairness’ had to be found to make 
the concept operational (van Noordwijk et al., 2012b; Kerr 
et al., 2014; Leimona et al., 2015a; Lapinski et al., 2017).

A classification of water-related ecosystem services 
that is closer to hydrologic function (rather than the way 
people benefit, as in provisioning, regulating or cultural 
services) has been used in recent reviews (Table 2.1; van 
Noordwijk et al., 2016; Lusiana et al., 2017).

2.2.7.1 Generic Functions

Function W1: Water transmission

The commonly observed association of streamflow  
and forests is the combined effect of the high-precipitation 
places where forests tend to occur and the way water is par-
titioned over streams and recycled to the atmosphere (Box 

2.6). When total water yield is the primary performance 
criterion for a watershed (e.g., where a large reservoir is to 
be filled and sediment loads are not an issue), less trees will 
lead to more blue water. Overall, studies in both small and 
large watersheds indicate that removal of forests reduces 
evapotranspiration (ET) and increases streamflow, while 
reforestation does the opposite (Moore and Wondzell, 
2005; Andréassian, 2004; Li et al., 2017a).

In a summary of hydrological research in 30 long-term 
ecological research sites in the US and Canada (Jones et 
al., 2012; Figure 2.6 A and C), the E

act
/E

pot
 ratio was close 

to the P/E
pot

 ratio when the P/E
pot

 ratio was less than 1, in-
dicating water-limited ET and plant growth, and around 1 
when the P/E

pot
 ratio was greater than 1, indicating ener-

gy-limited ET. E
act

/E
pot

 ratios > 1 point to uncertainties in 
the calculation of E

pot
 (Lu et al., 2005), timescales where 

ΔS is not negligible, or situations where groundwater flows 
support E that are not accounted for in P. These E

act
/E

pot
 

ratios for natural vegetation in the dataset of Jones et al. 
(2012) are higher than the average for ‘forest’ in the Zhou 
et al. (2015) data set, and may point to heterogeneity of 
what is included in forests when compared to non-forests.

Canopy interception may contribute to higher E
act

/
E

pot
 ratios of forests compared to other vegetation. Water 

Water-related ecosystem functions provided by vegetation and  
potentially perceived as ‘ecosystem services’

Functions Metrics

Generic

W1 Water transmission Total	water	yield	per	unit	rainfall

W2 
Buffering	peak	river	flows

Wet-	and	dry-season	flow	persistence	(van	Noordwijk	et	
al.,	2017a,b)	or	flashiness	(Holko	et	al.,	2011)
River discharge per unit above-average rainfall

W3 Gradual	release	of	stored	water	supporting	dry-
season	flows	

Dry-season	flow	persistence	
Aquifer recharge

W4 Maintaining	water	quality	(relative	to	that	of	
rainfall)	

Pollutants	per	unit	volume	of	water
Biological	water	quality	indicators

Site-specific 

W5 Stability of slopes, absence of land-slides 
Woody roots for topsoil binding and anchorage
Non-erosive	pathways	for	overland	flow

W6 Controlling soil loss by erosion

Surface	runoff	pathways
Volume	of	trapped	sediment	in	filter	zones
Infiltration	of	topsoil	and	subsoil	(macro	porosity	due	to	
worms	and	roots)

W7 Microclimate effects on air humidity, temperature 
and air quality

Wind speed; reduction in daily maximum temperature; land 
surface temperatures

W8 Coastal protection from storm surges, tsunamis Retardation	of	waves,	reduced	maximum	run	up	height

Frontier of science

W9 Ecological rainfall infrastructure and biological 
rainfall generation

Recycling of atmospheric moisture; height above vegetation 
of rainfall generating events; ice-nucleating agents

Source: van Noordwijk et al., 2016; Lusiana et al., 2017

Table
2.1
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intercepted by forest canopies may evaporate without 
being measured (Sahin and Hall, 1996; Carlyle-Moses, 
2004; Brown et al., 2005; Wei et al., 2005, 2013). Leaf 
area index, thickness, and characteristics (i.e., waxiness, 
hairiness and drip tips) determine the absolute amount of 
water stored after any precipitation event (Gash, 1979), 
and thus water available for evaporation from the canopy. 

Forest species composition and age influence the E
act

/
E

pot
 ratio of forests. Paired watershed experiments (Box 

2.5) have shown larger effects on streamflow for changes 
in evergreen forest than for changes in broadleaf decidu-
ous forest (Bosch and Hewlett, 1982; Brown et al., 2005), 
but age of the experimental stands may have influenced 
these results (Jones and Post, 2004). Changes in forest 
water yield over time have been attributed to shifts in 
forest species composition between low and high-water 

using (mesophytic) tree species (Caldwell et al., 2016;  
Elliott et al., 2017). 

In a review of forestation effects on streamflow by 
Filoso et al. (2017), most studies reported decreases in 
water yields following the intervention. However, most 
studies referred to plantation forestry rather than forest 
restoration with mostly slower growing native species. 
Furthermore, studies were especially limited for the hu-
mid tropics and subtropics. One of the challenges in inter-
preting such data is that actual precipitation over forests is 
not readily measured, as standard climate stations meas-
ure away from trees, while wind-corrections on rain gaug-
es are not consistently applied across data sets (Chang, 
2006). If regional vegetation influences precipitation, 
then its effects are implicit in the data and may not be 
explicitly considered in the data analysis and conclusions. 

Blue water yield in relation to 
vegetation and precipitation
Forests occur mostly in places with relatively high precipi-
tation. However, relative to most other vegetation, evapo-
transpiration for a given precipitation is higher in forests, 
implying less water transmission to streams (and more to 
‘rivers in the sky’). The net effect on streamflow of these 
two findings has been debated. In the most comprehen-
sive global dataset of watershed studies, where P, Q, and E 
have been assessed across the main continents at annual 
time scales for a range of land cover types (Zhou et al., 
2015; Zhang et al., 2017), an approximately constant wa-
ter transmission or Q/P ratios of 32.7%, 34.5%, 34.5% and 
30.5% were obtained for forest, shrub, mixed land uses 
and crops/grass, respectively. The forests were associated 
with the highest precipitation, with P/Epot ratios for the 
four land covers of 1.17, 1.07, 0.92 and 0.88, respectively. 
This compensated for the higher Eact/Epot ratios of the 
four land covers: 71.8%, 59.2%, 53.3% and 55.2%, respec-
tively. Both the Q/P and Eact/Epot ratio depend on local 
climate (Figure 2.6). The weighted average based on the 
global distribution of P/Epot ratios (Figure 2.2A) indicates  
a global mean water transmission fraction for forests 
and non-forests of 33.8 and 40.8%, respectively (and Eact/
Epot ratios of 70.4 and 60.9%, respectively). In the wettest 
part of the data range, the difference in Eact/Epot ratio is up 
to 20%. The averages for the four land cover classes are 
midpoints of a rather wide statistical distribution, and the 
stated differences may not hold for specific land covers 
compared in a given location. The lower Eact/Epot 

 ratios 
for crops reflect annual assessments; within the growing 
season, closed crop canopies can operate at Eact/Epot ratios 
of close to 1 if the soil is sufficiently moist. 

Figure 2.6 D shows that the average Q/P ratio for all veg-
etation types at low rainfall does not drop below 15% and 
may actually increase when the lowest P/Epot ratios are 
considered. This is likely due to peak rainfall events that 
exceed the instantaneous infiltration capacity of the soil. 

Part of the variation in annual data analysis like this is that 
groundwater stocks carry over from wet to dry years, de-
pending on substrate and topography (Condon and Maxwell, 

2017). Gudmundsson et al. (2017) challenged the continuous 
functions used in the analysis of these data by Zhang et al. 
(2017); the current analysis is based on means for P/Epot class 
to avoid the assumptions of continuous functions.

Figure
2.6

Box
2.6

Relation between precipitation relative to potential 
evapotranspiration (P/Epot) and actual relative to potential 
evapotranspiration (Eact/ Epot) (A, B), and relation between 
streamflow Q relative to P (C, D) for two datasets.  A and 
C are from 30 long-term ecological research sites in the 
US and Canada (Jones et al., 2012) and B and D are from 
a global dataset (Zhou et al., 2015).
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Function W2: Buffering peak river flows 

Unanticipated floods create major damage (Brauman et 
al., 2007; Bishop and Pagiola, 2012; Winsemius et al., 
2013) and the human and economic costs of floods, par-
ticularly where cities are built on floodplains, can be huge 
(Farber et al., 2002; Turner and Daily, 2002). While floods 
may originate from factors exogenous to the landscape of 
interest (such as heavy precipitation, earthquakes induc-
ing dam collapse, tsunamis or coastal storm surges (van 
Noordwijk et al., 2017a)), they may also be caused by 
land use patterns, such as low infiltration capacity, limited 
soil water storage, logging practices, forest roads (Wem-
ple and Jones, 2003) or accelerated snow melt (Jones and 
Perkins, 2010; Schulte et al., 2015). Avoided flood dam-
age may translate into high economic value, justifying an 
‘insurance’ approach to maintaining or restoring forests, 
if effects can be sufficiently quantified. 

Forests and their management can affect the peak flows 
that cause flooding downstream (Rogger et al., 2017; 
Jacobs et al., 2018), but the degree to which this func-
tion is achieved in any given context remains subject to 
debate and uncertainty. Most of what has been presented 
from correlational studies as direct evidence of a relation 
between forest loss and increased flood risk has alterna-
tive interpretations in relations with human demography 
and remains contested (van Dijk et al., 2009). However, 
the analysis of Malaysian data by Tan-Soo et al. (2014) 
with adequate controls of confounding factors showed 
increased flood risk after conversion from natural forest 
to plantation crops and urbanization. Elsewhere natural 
forest was shown to be more effective in reducing floods 
than plantations on former agricultural lands (Nadal-
Romero et al., 2016).

Forestation may reduce flooding by rapidly increasing 
evapotranspiration and enhancing infiltration more slowly 
once soil macroporosity increases (Bresson and Valentin, 
1993; Ilstedt et al., 2007). The relative importance of these 
two effects varies with context, and is a challenge for anal-
ysis of empirical data, as is the statistical distribution of 
peak precipitation events that are the direct cause of floods. 

Efforts are needed to relate the more readily observable 
response to less-extreme events to what can be expected 
in extremes. An index of ‘flashiness’ of streams has been 
used in evaluating streamflow records (Baker et al., 2004; 
Holko et al., 2011); it quantifies the relative day-to-day 
changes in flow. A recently introduced method goes a step 
further, as it provides a direct link between the part of a 
peak rainfall event that comes directly into the stream and 
the ‘flow persistence’ (flow regularity) that can be observed 
in the day-to-day changes in flow (van Noordwijk et al., 
2017a, b). Instantaneous peak flow, which is relevant for 
flood risk management, can be derived from the maximum 
mean daily flow in various ways (Jimeno-Sáez et al., 2017), 
connecting flood assessments to daily flow accounting 
schemes. New ways of estimating flow duration curves for 
ungauged catchments have been developed (Poncelet et al., 
2017) using geographic similarity. 

In the temperate zone, floods can be caused by snow-
melt in spring as well as by peak rainfall events in sum-
mer, with different opportunities for forests to provide 

function W2. The energy relations of forests also cause 
snow to accumulate and melt differently than in openings, 
so forest cover may mitigate snowmelt peaks (Bergström, 
1995; Seibert, 1999; Varhola et al., 2010). The first quan-
titative studies that related forest cover to flooding risks 
were carried out in Switzerland in the 1920s (Mather and 
Fairbairn, 2000). By comparing flooding responses in the 
valleys with varying degrees of conversion of forests to 
alpine meadows and/or agricultural lands, a safe thresh-
old of forest cover of 30% was derived. In valleys with 
more than 30%, forest snowmelt was more gradual and 
flooding risk was lower, than in valleys where all snow 
could melt simultaneously.

Although it is difficult to assess statistical significance 
for rare, extreme events, forest harvest was associated 
with significant increases in peak flows in both small and 
large (100 - 1,000 km2) basins (Jones and Grant, 1996; 
Jones, 2000). Partial forest harvest may produce small-
er effects on peak flows (Troendle et al., 2001). Forest 
harvest also is associated with increases in peak flows 
in watersheds ranging from 1 to 1,000 km2 (Jones and 
Grant, 1996). Engineering measures (dams, reservoirs, 
canals and dykes) can significantly alter the flow regime 
of streams (Poff et al., 1997). The life expectancy of such 
structures depends, however, on the sediment load of in-
coming streams and thus on upper watershed conditions 
(Graf et al., 2010). 

Function W3: Gradual release of stored water 
supporting dry-season flows 

Gradual release of water stored in the ‘sponge’ of forest 
soils primarily depends on the geomorphological context 
(Section 2.2.2) rather than on the more visible part of the 
forest.

After Hamilton and King (1983) and Bruijnzeel (1990; 
2004) drew attention to the soil, rather than the trees, as 
the most hydrologically relevant part of a forest, foresta-
tion research has tried to clarify the increase in infiltra-
tion that is needed to have a positive effect on dry-season 
flows, offsetting additional water use by fast-growing 
trees. While annual streamflow is likely reduced by for-
estation, effects on groundwater release are uncertain, as 
they depend on the balance of infiltration and (deep) wa-
ter uptake by trees (Ma et al., 2009; 2010).

Forest soils typically have a litter layer that retains 
water on the surface and increases the time available for 
infiltration and protects soil surfaces from the erosive ca-
pacity of direct rain droplets (e.g., Hairiah et al., 2006). 
In peri-urban environments, leaf litter, root channels, and 
animal burrows can detain and absorb water, reducing 
erosion and turbidity (Seitz and Escobedo, 2011). Loss of 
forest cover is associated with loss of soil organic matter 
and associated aggregates that lead to reduced moisture 
holding capacity (Allen, 1985). 

Intermediate tree densities provide a solution for the 
tradeoff between enhanced infiltration and increased wa-
ter use due to trees (Ilstedt et al., 2016). When clearing 
land for crop production, farmers in the parkland agrofor-
estry systems of the Mediterranean and the Sahel retain 
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old trees, especially those of a number of species with 
valued products (fruits, edible young leaves; Bayala et 
al., 2015). The ratio of beneficial effects and water use is 
likely higher for old than it is for young trees (van Noord-
wijk and Ong, 1999). Actual tree densities may be close 
to what is optimal from a perspective of groundwater 
recharge: more trees would imply higher water use, less 
trees would affect infiltration (Ilstedt et al., 2016). 

Function W4: Maintaining water quality 

The association between natural forests and good water 
quality is based on a number of aspects:
	 	lower sediment loads, as erosion is largely confined to 

shallow landslides and much of the soil involved can 
become incorporated in surrounding vegetation rather 
than reaching streams;

	 	tight nutrient cycling with little nutrients lost to 
streams (when compared to agricultural land with re-
current nutrient inputs); and

	 	scarcity of pollutant point sources, although bacteria 
such as Escherichia coli can be present whenever verte-
brates are in close contact with streams.

However, the general association between forest conditions 
and good water quality needs to be contextualised. Retain-
ing riparian zones of native forest can reduce some of the 
negative effects of plantation forestry on flow regimes and 
water quality (Little et al., 2015). Relatively small strips of 
riparian vegetation can act as sediment filters in overland 
flows from uphill agricultural plots and make a subwater-
shed behave ‘forest-like’ (van Noordwijk et al., 1998a; Ra-
nieri et al., 2004) in terms of sediment load (Box 2.7). 

2.2.7.2 Topography-Dependent Functions

Function W5: Stability of slopes, absence of 
landslides 

A large amount of literature links forestry to increased 
occurrence of landslides, debris slides, and debris flows 
in steep landscapes as a result of logging or forest roads 
(Swanson and Dyrness, 1975; Swanson and Swanston, 
1976; Amaranthus et al., 1985; Wemple et al., 2001; Si-
dle et al., 2006). Landslides, however, are a natural part 
of landform evolution, but forest condition and soil type 
influence their occurrence (Verbist et al., 2010). Land-
slides are triggered by positive water pressures within soil 
pores, facilitated by macroporosity and high instantaneous 
infiltration rates (Sidle and Bogaard, 2016). Vegetation, 
especially undisturbed native forest, promotes cohesion of 
steep hillslopes through root systems (Hales et al., 2009), 
by decreasing peak rainfall intensities through canopy in-
terception and by reducing soil water content through evap-
otranspiration, which promote slope stability (Turcotte and 
Malamud, 2004; Sidle and Bogaard, 2016); however, large 
trees can add weight and increase landslide risks when up-
rooted by strong winds. Increased land sliding is particu-
larly likely within a window of a decade (or two decades in 
cold climates) after logging or forest conversion, depending 
on rates of root decay and root development by new vegeta-
tion (Dhakal and Sidle, 2003). Forest cover also modulates 
avalanche risk on mountains with snowpack; forest condi-
tions that reduce likelihood of avalanche include a crown 
cover of >30%, the absence of gaps >25 m in length, and 
an increased terrain roughness associated with standing or 
downed trees that exceed snow depth (Bebi et al., 2009). 

Function W6: Controlling soil loss by erosion 

Forests with understory vegetation and intact litter layers 
have low rates of erosion, but forest harvest and roads in-
crease erosion (Wemple et al., 2001; Sidle et al., 2006). 
Removal of the forest litter layer increases overland 
flow of water, and hence, surface erosion (as described 
for Nepal by Ghimire et al., 2014a). Forest plantations 
without understory can increase the kinetic energy of 
throughfall beyond that of rainfall and increase detach-
ment of soil particles as a first stage of erosion (Wiersum, 
1991). Riparian forests are particularly important to limit  
streambank erosion (Verbist et al., 2010). Reforestation has 
been associated with reduced erosion and sedimentation in 
major river basin systems in China (Miao et al., 2010; Ma 
et al., 2014; Yang et al., 2015).

Riparian forests and water 
quality
Forests can have direct influence on water quality in 
streams, including temperature, sediments, nutrients, and 
biological oxygen demand (Stelzer et al., 2003; Moore 
et al., 2005). First, direct microclimate effects influence 
stream temperature, critical for ‘cold water’ fish (Groom 
et al., 2017). Secondly, riparian forests act as buffer zones 
that filter sediment, nutrients, and contaminants before 
they reach the water (van Noordwijk et al., 1998a; Ranieri 
et al., 2004). For example, riparian forests can retain 
soil and limit sediment erosion that would otherwise 
transport unwanted mineral soil particles to the water, 
consequently darkening and decreasing its quality (Neary 
et al., 2009). Nutrients (nitrogen and phosphorus) and 
contaminants (pesticides and pathogens) that could also 
be transported to the water can be adsorbed in the for-
est soils or taken up by plants and microbes (Gilliam et 
al., 2011). Thirdly, organic matter from forests gets washed 
into waterways (Para et al., 2010). It provides shade, 
which prevents excessive growth from aquatic plants and 
algae, and consequently regulates oxygen levels and water 
clarity (Thrane et al., 2017). Additionally, these terrestrial 
inputs to the food web are either directly ingested by 
zooplankton and fish or are decomposed by sediment 
microbes that release bioavailable carbon into the water 
(Berggren et al., 2009). Together, these processes support 
as much as 20% to 85% of secondary production in 
freshwater systems (Karlsson et al., 2012). In order to 
meet their energy requirements, biota in less productive 
waters are particularly dependent on these terrestrial 
subsidies that supplement within-lake primary production 
(Tanentzap et al., 2017). The surrounding species of trees, 
land-use, seasonality, and the communities present within 
the water regulate how strongly these terrestrial inputs 
will impact the aquatic ecosystem (Cole et al., 2006). 

Box
2.7
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Function W7: Microclimate effects on air  
humidity, temperature and air quality
Many processes influence how forests and trees outside 
forest (in agricultural lands or urban environments) affect 
local air temperature, and effects depend on the climate 
zone. In boreal forests, a large amount of literature has de-
bated the effects of forest and snow albedo (reflection of 
incoming radiation), forest change, and climate change on 
energy balances. Boreal forest albedo is very low both in 
summer and under snow (Betts and Ball, 1997; Manninen 
and Stenberg, 2009), contributing to warmer temperature 
under these forests in winter compared to other vegetation 
cover types, and these differences are not expected to be 
sensitive to anticipated climate change, including reduction 
in snow cover (Kuusinen et al., 2012). Furthermore, the ef-
fects of tree cover on reduced night-time cooling can offset 
day-time effects of increased evapotranspiration (Peng et 
al., 2014). Differences in albedo between forests and clear-
ings in the tropics are relatively small (Pinker et al., 1980; 
Teixeira et al., 2015) and cooling associated with evapo-
transpiration may dominate the energy balance, making 
forest canopies cool relative to other cover types (Ellison et 
al., 2017). Cooling effects of trees and open water were first 
described for ‘urban heat islands’, but these effects are now 
recognized in agricultural landscapes with various degrees 
of tree cover (Bayala et al., 2015; Sida et al., 2018).

Function W8: Coastal protection from storm 
surges and tsunamis

Coastal protection by mangroves and other forests 
may well represent the highest ecosystem services of 
trees per unit tree biomass, as coastal areas can have 
high human population densities (Box 2.8). Empirical 
evidence for the benefits of such protection during the 
December 2004 tsunami in Southeast Asia, however, 
has been mixed with trees blocking exit pathways for 
people living between the tree cover and the coast for 
example (Bayas et al., 2011). Nevertheless, interest in 
ecosystem-based coastal defence in the face of global 
change is increasing (Gedan et al., 2011; Temmerman et 
al., 2013), if only for financial reasons, as construction 
of alternative protective sea walls is expensive (Guna-
wardena and Rowan, 2005).

2.2.7.3 Frontier of Science

Function W9: Ecological rainfall infrastructure 

Forests and trees outside forest may influence four fac-
tors required for precipitation at a given time and place: 
1) the presence of atmospheric moisture; 2) phase shifts 
from vapour to water droplets (clouds); moist air has to 
get into cooler higher atmosphere layers for ice nuclea-
tion (and thus cloud formation) to happen, but just how 
cold (and thus how high) it has to be depends on ice nu-
cleating agency (e.g., dust and bacteria that live on the 
leaves of plants) which can increase the temperature 
threshold (from minus 30oC in clean air to around minus 
5oC); 3) local capture of atmospheric moisture (ending 

the atmospheric residence of a specified unit of moisture) 
that might otherwise move elsewhere; and 4) mass flow of 
moist air during and between rainfall events that depends 
on modifications of prevailing winds (Makarieva et al., 
2009, 2013). 

Capturing atmospheric moisture in plant available 
form can occur at a number of scales. Water droplets in the 
air that are too small to fall can be captured by vegetation. 
For example, in cloud forests, epiphytic lichens, mosses, 
and hairy leaf structures strip ‘horizontal rain’ (Holwerda 
et al., 2006) from the atmosphere. The presence of cloud 
forests, often the highest parts of water towers (Viviroli 
et al., 2007; Dewi et al., 2017), can thus actively increase 
precipitation (Hamilton et al., 1995; Bruijnzeel, 2001; 
Ramirez et al., 2017; Domínguez et al., 2017; Regalado 
and Ritter, 2017). The loss of cloud forests can lead to 
reductions of water yield, opposite to the increases ex-
pected otherwise. Locally-generated moisture can also 
be captured as dew by hairy plants growing in dry envi-
ronments with large diurnal temperature fluctuations that 
increase relative humidity at night (Stone, 1957; Zhuang 
and Zhao, 2017). Dew is a major source of green water 
rather than blue water (Ben-Asher et al., 2010), but can 
help in establishing ‘ecological rainfall infrastructure’ in 
dry environments (Zhuang and Zhao, 2017). Forest cover 
may affect cloud height and cloud cover (Millán et al., 
2005), slow down winds, and therefore influence the like-
lihood of rainfall triggering (Fan et al., 2007; Poschl et 
al., 2010; Pöhlker et al., 2012; Morris et al., 2014, 2016; 
Bigg et al., 2015).

‘Rainfall triggering’ tends to have a physical compo-
nent in cooling that follows the rise of air masses due to 
turbulence or orographic effects as well as a chemical 
and biological component. Forests, and especially forest 
edges, have been shown to influence turbulence and as 

Mangroves and land building in 
the river deltas
Mangroves often dominate the estuaries of tropical river 
basins, providing significant services including trapping 
and accumulating sediments and eventually elevating 
surface and forming deltas. They are often considered 
land builders and in many places the accretion rate of-
ten exceeds sea level rise. Global estimates of the accre-
tion rate are 4.0 + 3.5 mm/year (Breithaupt et al., 2012), 
while sea level rise under a high emission scenario 
ranges between 2.6 and 3.2 mm/year (Church et al., 
2011). The rate and extent of accretion depend on the 
hydro-geomorphic settings of the coasts and estuaries. 
Tidal range, topography and geological formation of the 
watershed and coastal areas are important determining 
factors (Balke and Fries, 2016), as well as anthropogenic 
influences through coastal development (Alongi, 2008). 
The unique nature of mangrove root systems not only 
supports the trees to withstand sea currents and waves 
but also secures the stability of the coast itself.  The 
ability of mangroves to successfully adapt to changes in 
sea-level depends on accretion rate relative to rate of 
sea-level change. 

Box
2.8
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such can bring moist air to heights where it is sufficiently 
cold to form ice nuclei and raindrops (Degu et al., 2011; 
Pielke, 2013). Aerosols (e.g., dust or hygroscopic salts as 
used in ‘cloud seeding’) and volatile organic substances 
derived from vegetation (Stopelli et al., 2015; Fröhlich-
Nowoisky et al., 2016) interact with biological cell wall 
material (e.g., ice-nucleating bacteria, pollen, fungal 
spores) that can act as catalysts for ice nucleation (van 
Noordwijk et al., 2015c; Morris et al., 2016). 

Forests influence winds with their frictional resistance 
tending to reduce wind speeds. Wind speeds over the Am-
azon, Congo Basin and forested parts of insular Southeast 
Asia are remarkably low, allowing local evapotranspira-
tion to be recycled as local rainfall before it is transported 
hundreds or thousands of kilometres. 

The mechanism by which developing rainstorms can 
attract moisture from adjacent areas by creating low pres-
sure systems (Makarieva et al., 2009, 2013) is not yet ad-
equately represented in global circulation models and the 
debate over its significance continues (Sheil and Murdi-
yarso, 2009; Sheil, 2018).

The concept of tree planting in order to increase pre-
cipitation, such as in ‘Great Green Walls’ in China and 
the Sahel remains controversial, but recent advances in 
science make it open to further analysis.

2.3 Research Gaps and Conclusions

2.3.1 Research Gaps

For each of the seven system delineations there is a need 
for continuous refinement of the concepts, models, and 
methods as knowledge of the multiple relationships in-
fluencing forest-water relations grows. Research progress 
can especially be made at the interfaces between the 
various system delineations. These include: (1) estimates 
of evapotranspiration that can be scaled from tree-level 
sapflow, vegetation-level eddy-covariance and watershed-
level water balances; (2) estimates of water storage and 
groundwater fluxes (including as it relates to soil type, 
soil depth and terrain features and may correlate with 
forest types); (3) estimates of atmospheric moisture re-
cycling reconciling isotope-based and mass balance ap-
proaches; (4) estimates of both abiotic and biotic aspects 
of rainfall triggering; and (5) metrics that capture the ef-
fects of land cover change on flood (and drought) risk at 
various scales and in various contexts with confounding 
factors controlled.

2.3.2 Conclusions

A broader context that considers the interactions of 
climate, forests, water, and people is needed to assess 
current risks of not achieving the water quantity, qual-
ity and regularity of flow needed for the SDGs. At each 
of the seven system delineations of the climate-forest-
water-people system, there are some globally valid con-
clusions, but also many statements that depend on the 
specific context: 

1)  At the watershed scale, four major determinants of 
ecosystem structure need to be considered – leaf area 
index, condition of the soil surface, infiltration pat-
terns dependent on soil structure, and rooting depth – 
to understand hydrologic functions of forests and tree 
cover outside forests, and responses to ongoing and 
anticipated changes.

2)  At the landscape scale, streamflow regulation through 
dams and reservoirs that tend not to occur evenly over 
larger watersheds and water abstractions can mask or 
strongly influence any positive effects forests in up-
per watersheds have on streamflow regimes. Unless 
one understands the physical basis of deviations from 
area-based scaling, it is risky to extrapolate beyond the 
scale range over which scaling rules were calibrated. 
This applies especially to peak flows, flooding risks 
and the degree of flood protection that intact natural 
forests and/or plantation forestry provides. 

3)  Tradeoffs between total water yield (expressed as frac-
tion of precipitation) and the regularity of flow and wa-
ter quality are to be expected for most contexts, as the 
rate of evapotranspiration in forests tends to be closer 
to the potential value than it is for most other vegeta-
tion, with the exception of wetlands and possibly ir-
rigated agriculture. 

4)  Forest-derived atmospheric moisture mixes with 
ocean-derived moisture in spatially explicit patterns 
that have been well-documented on the basis of at-
mospheric measurements, and that lead to strong ge-
ographic variation in the percentage of precipitation 
derived from the long versus the short hydrologic 
cycle, as well as in the contribution a forest makes 
to short-cycle precipitation downwind. If confirmed 
by further scientific analysis, the idea that forests 
contribute to downwind rainfall could be of overrid-
ing importance for the prevention of water shortages, 
flood mitigation and design of forest restoration ac-
tivities.

5)  The hydrologic functioning of forests and landscapes 
with partial tree cover translates to a wide range of 
‘ecosystem services’, with direct links between hu-
man benefits classified as provisioning, regulating, 
supporting and cultural services. The biophysical ba-
sis of the hydrologic functions and their variation in 
space and time may well be better understood than 
the social dimensions of associated rights, value con-
cepts and regulations.
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