
 

  

Taking soil samples for carbon measurement 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Bulk density soil sampling as a step to estimate soil carbon stock, Central 
Kalimantan, Indonesia 
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CHAPTER FOUR 

Soil science as part of agroforestrya 
Meine van Noordwijk, Edmundo Barrios, Keith Shepherd, Jules Bayala, Ingrid 
Ӧborn 

Highlights 

• New answers to land degradation problems have been an agroforestry focus 
for four decades 

• Plot-level experimentation following agronomic traditions proved to be a 
challenge due to lateral interactions 

• Testing hypotheses at process level and analysing tree–soil–crop interactions 
led to synthetic simulation models 

• Policy attention to soil-nutrient replenishment in Africa and alternatives to 
slash-and-burn in humid tropics required more than technical analysis 

4.1 Introduction 

World Agroforestry (ICRAF) has as its mandate all agricultural land use that involves trees, 

beyond what is considered to be forest. The latter distinction is rather fluid, both temporally 

and institutionally, as the example of long-rotation shifting cultivation may show. Agroforestry 

itself ranges from croplands with a few trees added through to systems where tree crops 

(considered to be agricultural, such as coffee, cacao or rubber) provide a perennial vegetation 

layer, augmented with upper canopy layer trees utilized to modify microclimate, yielding 

economically valuable products. The consequences for soil conditions and functions vary 

along this range. 

Agroforestry research has from its start operated on the active and often contested interface 

of the need to increase agricultural production, overall and per unit area, and the need to find 

more sustainable ways of managing natural resources. Agroforestry is typically associated 

with ‘integrated’ rather than ‘segregated’ solutions to meet the dual imperative, with specific 

attention to the understanding and management of trade-offs at the scales of farmers, the 

landscape, (sub-) national governments and the global policy arena. Soils have a key function 

                                                      
a A more extensive versiona is available as ICRAF Working Paper 200 
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to both issues of land productivity and environmental effects, and soil research of one type or 

another has been part of nearly all research activities of ICRAF from its start. 

Classifying the research output of ICRAF on the basis of citations to publications grouped by 

topic (Figure 4.1) shows six identifiable waves. Virtually all literature on agroforestry systems 

and improvement or ‘tree–soil–crop interactions’ that had been cited by 2013 had been 

published before 2000; by contrast, publications on agroforestry and environmental services 

and climate-change mitigation and adaptation started in the mid-1990s and flourished after 

2000. Intermediate time patterns (steady progression in time) are found for agroforestry 

systems in social, policy and economic contexts, and for tree domestication. 

 
Figure 4.1 Citations to ICRAF 
publications classified by 
topic and year of publication 
(total / number of papers 
with more than 100 
citations); based on Scholar 
Google (May 2013) 

Note: AF = agroforestry 

 

This chapter reviews progress in agroforestry soil science in the past two decades under 

seven headings and provides key references for each that point to more detailed reviews and 

syntheses. 

1. Big-issues agenda with attention to local knowledge: soil depletion, land degradation, 
global climate change and loss of biodiversity 

One of the first documents produced when ICRAF was being formed described the issues of 

land degradation in the tropics and the urgency of finding solutions for intensification that 

combine technical, ecological, social and economic aspects. This topic remained important in 

the first ten years of ICRAF1 and forms a red thread through thirty-five years of institutional 

history. Partial successes have not yet combined to the breakthroughs needed at global scale 

because the issue interacts with international terms of trade, value chains for inputs and 

outputs in the local, national and international economies, and the dynamic rural–urban 

interface and its consequences for management of food prices. Arguments for public 

investment in soil-fertility replenishment in Africa received attention2 but they were not 

backed by economic policy analysis, while the technical aspects of supporting phosphorus 

levels so that tree and grain legumes through biological nitrogen fixation could do the job of 

adding nitrogen to the soil were not convincing at farmer level3,4. Some success was made 

with fertilizer trees in fallow rotations but national subsidies for N-fertilizer to support grain 

crops won the day when food shortages became urgent again in southern Africa. Saving 
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Africa’s soils still requires a combination of policy with science and technology for improved 

soil management that is not yet on the agenda in Africa5. The call for new initiatives to save 

Africa’s soils remains urgent6.  

The 1992 Rio conference where the primary global environmental conventions were shaped 

marked the start of a new interest in how local, national and international actors interacted in 

the process of tropical forest conversion and how changes in land-use practice could be part 

of a package that obtained equal local benefits but substantially reduced global impacts on 

climate and biodiversity7.The Alternatives to Slash and Burn (ASB) program was initiated to 

identify and support sustainable land-use intensification in the tropical forest margins, 

alongside protection of remaining forests. While declining soil fertility under reduced fallow 

lengths is one of the classical storylines that can be quantified in simple models8, the focus of 

ASB was not on traditional shifting cultivation for subsistence livelihoods9 but on its modern 

market-related versions. Almost from the start, researchers recognized that slash-and-burn as 

a method of land clearing was used by large-scale operators as a cheap way of establishing 

plantations, as a starting point for low-intensity grazing and as part of traditional shifting 

cultivation and crop–fallow rotations. The research program described patterns of land use in 

their social, economic and environmental contexts and then focused on a comparison of 

consequences of various land-use alternatives for an array of criteria. Soil-related constraints 

were found to be part of a much broader set of ecological, economic and social determinants 

of land-use patterns10,11. This led to analysis of trade-offs and interest in the way drivers of 

business-as-usual change can be leveraged to nudge systems into a more desirable 

direction12. 

An important part of the ASB research agenda along the forest transition curve was the 

rehabilitation of abandoned land, as an alternative to further deforestation. There was major 

confusion on whether such land areas were ‘degraded’ or abandoned for other reasons, for 

example, related to tenure issues and continued forest institutional regimes that prohibited 

other land uses13. The extent and dynamics of Imperata grasslands in Southeast Asia were 

reviewed14, with specific attention to soil conditions. The latter were found to not be a real 

constraint to subsequent intensification15,16. 

Agricultural systems can greatly benefit from integrative approaches that combine formal and 

informal knowledge to address current sustainability problems associated with global 

change17,18. There is increasing recognition of the potential value of knowledge held by land 

managers who have been closely interacting with their environment for a long time to 

contribute important insights about the sustainable management of natural resources19. 

Increased concern about soil management as a key determinant of sustainability in 

agricultural landscapes has driven the demand for early warning indicators to monitor 

changes in soil health, and their impact in the provision of ecosystem services, as affected by 

land-use change and agricultural intensification20,21. A participatory methodology has been 

published recently, following several years of South–South collaboration, to guide the 

mobilization and integration of local and scientific knowledge on indicators of soil quality and 

soil fertility management22. It was designed to facilitate bottom–up approaches that integrate 

local knowledge into soil management decision-making processes and strengthen the 

relevance, credibility and legitimacy dimensions required for the adoption of best 

management practices. This methodological guide describes how to apply participatory tools 
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in identifying, classifying and prioritizing local indicators of soil health knowledge so that they 

can complement technical indicators and later build farming communities’ consensus about 

how to best address soil-health constraints following agroecological management principles 

and integrated soil-fertility management options. The development of a ‘hybrid’ knowledge 

base, combining local and scientific knowledge, reflects an effort to understand the 

complexity of land management decision making to promote and protect multifunctional land 

uses23,24,25. This is part of a continuing effort to develop land quality monitoring systems that 

strengthen local environmental and agricultural institutions and communities with tools that 

support local decision-making in natural resource management and promote sustainable land 

use in agricultural landscapes26. 

 
Corn-based agricultural development policy has led to land degradation in certain area in Gorontalo, 

Sulawesi. Photo: World Agroforestry/Ni’matul Khasanah 

2. Agroforestry as a way to manage C, N, P capitals and beyond 

In its first decade, ICRAF science dealt with an inventory of the diversity of agroforestry 

systems of the world and their primary reasons for existence. Soil and land-health 

management, interpreted as a combination of erosion control and maintenance of soil 

fertility27, was identified as one of the strongest rationales for combining trees, crops and 

livestock on sloping lands. Soil-fertility improvement and better nutrient use-efficiency when 

introducing and managing trees (serving as nutrient pumps and safety nets) in 

agroecosystems were the focus of research aiming at optimizing agroforestry systems28. From 

the crop’s perspective, however, most trees in most circumstances have a direct negative 

effect based on competitive resource capture, and the longer-term benefits of inclusion of 

trees will only weigh up to the negatives in well-defined circumstances29,30. Those 

circumstances potentially include, beyond sloping land, the seriously nutrient-depleted 

landscapes of Africa on geologically old soils31,32,33. 

In the 1980s, major hope became vested in alley cropping or hedgerow intercropping. 

Inspired by farmer-developed technology on sloping land in Flores, Indonesia, it was 

popularized in Africa by an Indonesian soil scientist working at the International Institute of 
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Tropical Agriculture in Nigeria. There are many versions of the history of the hope–hype–crash 

dynamics of public expectations of what this technology could deliver and how lessons could 

be learned from the experience34. It was to be largely repeated, however, in the improved 

fallow and fertilizer tree story that replaced it as a ‘silver bullet’ solution. While not ultimately 

leading to widespread success, the research done on hedgerow intercropping and improved 

fallows helped identify underlying principles on the technical, social and economic 

sides35,36,37,38,39. The search for locally appropriate agroforestry solutions continued. 

Many studies have shown that soil organic matter (SOM) content of soil under trees is higher 

than in soils outside tree influence40. The attribution of this pattern to aboveground litter fall 

and belowground root turnover depends on local context41. However, crop yields do not 

correlate with total SOM, first of all due to the associated competition for light, water and 

nutrients but also because nutrient release from SOM is largely dependent on the fraction of 

SOM that is biologically active42. Aware of the competitive effects in simultaneous systems, 

research effort shifted to rotational crop–fallow systems as these are easier to understand 

and still part of farmers’ reality. Efforts to identify biologically active fractions of SOM have 

shown that the amount of N in organic matter that is not physically protected and associated 

with soil particles, that is, light fraction N that floats on water or solutions43 of densities below 

1.1 g cm-3, can be used as a sensitive measure of differences in SOM among cropping 

systems44 as it correlates with whole soil N mineralization45. Planted tree fallows significantly 

modified light fraction SOM when compared to a continuous unfertilized maize control; total 

SOM, however, was not affected46. Furthermore, while the amount of N in the light fraction 

correlated with maize yield, the quantity of light fraction SOM did not, thus, highlighting the 

importance of organic input quality in soil N availability47. Key attributes of trees with the 

highest potential to increase soil N availability include the ability to fix nitrogen and litter with 

low (lignin + polyphenol)/nitrogen ratio that results in fast decomposition rates48. Additionally, 

planted tree fallow studies in which SOM fractionation and sequential P fractionation were 

conducted on the same soil samples showed that the amount of P in the light fraction could 

serve as sensitive indicators of the ‘readily available’ soil-P pool49. Planted tree fallows, 

therefore, have been successfully used to regenerate degraded soils in Africa and Latin 

America in areas where population pressure on land is reduced50,51. 

With trees as the primary point of differentiation between agroforestry and agriculture and 

range management, the specific aspects of perennialism imply a different sampling in space 

and time of soil functions52,53. Trees tend to be deeper rooted (with many notable 

exceptions54) and sample a much larger horizontal area, challenging traditional plot-based 

research despite all efforts at trenching-off plots. The net effect (positive or negative) for a 

farmer of inclusion of trees in an agricultural system depends on A) total resource capture 

(TotCapt), B) harvest index of resources captured (HarvIndex), C) losses to other 

environmental compartments of resources not harvested (Loss), D) economic value of the 

resources harvested (Value) and costs of losses to the environment (Cost), E) the expenditure 

of labour and other inputs at going price (Price) and F) possible changes in land value 

(ΔLandValue): 

 
NetBenefit = TotCapt * HarvIndex * Value – Loss * Cost – Inputs * Price + ΔLandValue 
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Research has tried to dissect this by relating A to tree architecture, phenology and growth 

rate, potentially independent of B and D, which are the focus of tree domestication and tree 

improvement efforts, alongside value-chain economics. Aspect E, the labour requirements of 

keeping the competitive aspects of trees under control while benefitting from the positive 

contributions to local nutrient cycles, proved to be a major challenge for the once-popular 

hedgerow intercropping systems. Meanwhile, aspect C has gained importance with current 

refocus on greenhouse-gas emissions, alongside erosion and leaching losses of soil particles 

and solutes. Aspect F may still be under-researched. 

After a period of intensive research at process level on total resource capture, the conditions 

where ‘over-yielding’ of mixtures involving trees are fairly well established, while the effects of 

trees on losses by erosion and greenhouse-gas emissions have been quantified for a range of 

situations55. The interactions between trees and soil biota have been well explored in terms of 

mycorrhiza and earthworms (as reviewed later in this chapter) but a large part of the soil 

biological spectrum is open for further discovery. Science-based perspectives on bio-

economic modelling can be compared with farmers’ preferences and knowledge in the joint 

design of new management systems. 

With depletion of agricultural soils due to nutrient export beyond the replenishment by 

fertilizer identified as a key challenge of farming56, especially in Africa57,58, considerable effort 

has been directed to the use of trees as 1) sources of biologically fixed nitrogen59,60, 2) 

recyclers and safety-nets of nutrients from deeper layers61, and 3) converters of less-

processed nutrient sources, such as rock phosphate. However, farm-level nutrient 

budgets62,63 caution that agroforestry can result in large nutrient extractions in product 

removals while pointing to opportunities for nutrient imports through livestock feed. The 

potential for tree fallows to re-capture leached nitrate held in the subsoil on anion exchange 

surfaces was demonstrated64,65,66 and also the ability to reallocate some of the soil P into 

more labile P-pools67. While a number of technical solutions have emerged that are still worth 

further testing68, no silver bullets have emerged that could revolutionize farming under the 

constraints of high nutrient exports and low economic feasibility of input use. As an 

alternative direction, the shift to tree crops with high economic value per unit harvested 

product has proven to be more successful. 

Complementing the process and modelling approaches, new efforts are currently being made 

to efficiently describe the spatial variation in soil properties in the hope that this can lead to 

better targeting of sustainable land management practices while allowing for monitoring at 

real scale how soil properties change in response to land use69. A major challenge for any 

quantification of ‘impact’ is the counterfactual: what conditions could be expected without the 

intervention that is evaluated for impact? Any comparison of current soil conditions under two 

land-use systems must account for possible a priori differences between the locations where 

the two systems developed. This requires understanding of the existing variation in the 

landscape, local knowledge of conditions, preferences for specific parts of the landscape for 

specific land uses and ability to implement preferences70. There are some examples of tightly 

controlled designs for assessing changes in soil conditions in landscapes for forest transitions 
71 and exclosures72. 
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3. From process hypotheses and plot-level experiments to synthetic tree–soil–crop 

interaction models and management of filter functions 

Research on tree–soil–crop interactions in agroforestry have focused on growth resources 

sharing between trees and crops mediated by soil with the hypothesis of trees creating 

favourable microclimatic and soil modifications for the crops. The findings have shown that 

trees on farms provide services to agriculture by contributing to 1) extended growing season 

by keeping the landscape covered with vegetation, 2) regulating water flows to the benefit of 

crops and groundwater recharge, and 3) soil regeneration, carbon sequestration and nutrient 

cycling73. However, the potential benefits depend on complex spatial and temporal 

interactions between the biological, physical, hydrological and climatic components of the 

system74,75. Such interactions change with time as trees grow larger together with the 

processes that affect the soil, which are governed by the root systems to a large extent76,77, 

and also by the tree phenology78,79,80. Finally, management practices also affect these 

interactions, such as the tree density and vegetation cover, the use of fires to clear land81,82,83, 

pruning of tree crowns or roots84,85,86, and the maintenance of pruned biomass, crop residues 

and litter as mulch87,88,89,90,91.  

While tree species vary in rooting architecture and root biomass, tree roots can extend to 

deeper soil layers compared to those occupied by crop roots. They may, therefore, take water 

from the groundwater even though there is evidence of trees taking water from the top soil 

layers as well, depending on the species and its root systems92. Nevertheless, it is worthwhile 

to mention that there is no direct relationship between tree water extraction and fine root 

density because decreasing water potential also plays a role93. The effects of the increase of 

CO2 and temperature as a result of climate change on changes to soil carbon storage were 

reported to be contradictory, calling for more investigation to separate the effect of increased 

C and that of possible changes in roots and rhizospheres94. In mixed agroforestry systems, 

the use of isotopes has helped to disentangle the contributions of the components and 

revealed larger contribution of the C3 plants (trees) to soil carbon in comparison with 

annuals95,96,97. As tree roots can grow deeply, they can also lift water and, with it, nutrients 

that leached below the reach of crops. They can act as a ‘safety net’ to capture nutrients 

leached from the topsoil and redistribute them to the soil surface98,99. Such a mechanism has 

been reported to improve N use-efficiency100. In addition, estimates of water volume 

lifted/redistributed can represent up to 30% of daily evapotranspiration101,102. According to 

the authors, this has a number of eco-physiological implications, for example, maintaining fine 

root viability and resistance to drought while affecting some of the soil processes, such as 

increasing soil water and soil biota activity.  

Some synthetic analyses of published data using meta-analysis have also helped understand 

in which circumstances soil improvement translates into better crop production103,104. 

Another review and meta-analysis105 showed that spatial heterogeneity in savannah 

vegetation was a result of termite mounds being fertility spots in the landscape, enriched with 

clay, carbon, nitrogen, calcium, magnesium and potassium.  

Field investigations have helped generate a wealth of information on processes in isolation 

but have failed to reveal which one was the most prominent. A solution to this problem has 

been the development of a modelling phase which tried to synthesize the generated 
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information to reveal the most limiting factors and processes for the production of associated 

crops. For instance, simulations using Water, Nutrient and Light Capture in Agroforestry 

Systems (WaNuLCAS)106 revealed that the decrease in Zea mays growth near Grevillea robusta 

water was due to lower soil-water content that resulted in a decreased P diffusion107.  

Similarly, water was found to be the most limiting nutrient under Vitellaria paradoxa while it 

was P under Parkia biglobosa108. For planning adaptation, WaNuLCAS was also used109 to 

evaluate the effects of different management options (tree density, tree pruning, mulching 

and root pruning) on Sorghum bicolor production under future climate scenarios. There are a 

number of other models (APSIM, HiSafe, HyPAR, SCUAF etc) but they all have their limitations 

that are inherent to models, such as over-simplification, or our poor understanding of the 

processes involved in tree–soil–crop interactions, or to both110. If combining field 

investigations and modelling has helped to generate some scientific advances, there are still 

some methodological challenges in determining the ‘parkland effect’ (effect of a group of trees 

on biodiversity, microclimate etc), the trade-offs and synergies between and among goods 

and services, and how to boost the provisioning of ecosystems services111. 

Empirical research on agroforestry was initially largely built on the agronomic traditions of 

replicated field trials with plots in which a border zone was excluded from yield 

measurements to minimize lateral interactions between plots. Root research on trees, 

however, revealed that for many trees the lateral expansion can be multiples of the canopy 

height112 and much of the experimental evidence needed to be interpreted with caution. It is 

possible that ‘control’ plots were effectively mined by tree roots from neighbouring plots, the 

performance on such plots enhanced by external nutrient capture, and hence the contrast 

between plots with and without trees magnified. Digging (deep) trenches around plots brings 

only temporary relief, as tree root systems can within a year occupy the space. A well-

designed, replicated field trial113 on various types of hedgerows as erosion control strategies 

showed that the underlying variability of the hill slope with respect to infiltration capacity had 

a major effect on what was measured as overland flow at plot level and the effectiveness of 

hedgerows as filters depended on the position of measurement. Much of the subsequent 

research relied on understanding spatial variability in the field rather than on controlled 

experiments. Despite substantial effort to spatially parameterize the Universal Soil Loss 

Equation (USLE) for a landscape in Kenya114, the model correctly classified only 38% of sites 

into three degradation classes and the model sensitivity for delineating regions of severe 

degradation was only 28%.  Local calibration with ground data could increase the correctly 

classified sites to 54% but without expectation that a modified model would be valid 

elsewhere. Similarly, there was little spatial agreement between predictions of different 

models (including modified USLE approaches) for a coffee-dominated landscape in Lampung, 

Indonesia115; there, in-field erosion was found not to be the major determinant of river 

sediment transport. Overland sediment flows were partially filtered while paths used for 

motorcycles, roads and shallow landslides contributed sediment directly to the river. 

Sediment and soil transport issues appeared to have different determinants at every scale 

between a soil pedon, a plot, a hill slope, a small and a large catchment. The fractal dimension 

that characterizes net sediment transport with a length scale to the power 1.5–1.6 was 

found116,117 to have a parallel in the social organization of watershed management 

institutions118. There has been little accompanying work on the economic costs of soil erosion 



Chapter 4. Soil science as part of agroforestry  |  73 

and benefits of agroforestry. Estimated ecological–economic costs of soil erosion in Kenya 

using emergy analysis at the national level were found to be equivalent to the value of 

agricultural exports or electricity production119.  

A further step in the scientific understanding of agroforestry came when lateral resource 

capture was seen not only as a challenge to research aimed at defining technology for 

‘homogenous’ conditions but as an important aspect of real-world agroforestry, especially in 

the mixed stands typical of smallholdings, where edge planting of ‘aggressive’ trees may imply 

that half of the nutrients are scavenged off farm. This perspective on lateral resource capture 

aligned with the analysis of hedgerows of trees and naturally vegetated strips on sloping land. 

Rather than defining a uniform technology, science helped articulate a perspective on a range 

of niches in a diverse farming environment, with variation in tree properties that can be 

understood in, and used in fine-tuning of, farmers’ decisions to plant, prune, manage, harvest 

and/or remove120.  

4. Trees and other soil biota: old tree root channels, earthworms, mycorrhiza, rhizobia 

and nematodes 

Trees live above as well as belowground. Soil structure is a key determinant of root 

development and root function, as well as for other soil biota. Soil compaction as a 

consequence of agricultural use and/or overgrazing is both a symptom of soil (mis-

)management as well as a cause of declining primary productivity. The importance of this, 

however, varies with the rainfall regime and climate zone. Macroporosity of soils, the class of 

pores most easily compacted, is essential for saturated hydraulic conductivity and the ability 

of soils to handle intense rain without overland flow and ensuing erosion. Macroporosity in 

the field is linked to texture (cracking clay soils), decayed tree root channels121, the impact of 

deeply burrowing earthworms122 and possibly other soil biota. Measurement of infiltration in 

the field typically shows log-normal distributions, with a small fraction of points having one or 

two orders of magnitude of higher infiltration rates. The question of how such infiltration hot-

spots at field scale operate during extreme rain events cannot be easily assessed from current 

measurement techniques because much depends on their subsoil connectivity to landscape-

level drainage systems. Agroforestry can influence the continuous formation of macroporosity 

through the provision of leaf-litter-feeding earthworms and, at another time scale, the 

formation of decaying tree root channels. At the level of mesoporosity, the tendency of soils 

to form aggregates is strongly influenced by soil-ingesting soil biota123 and by fungal hyphae 

associated with mycorrhiza124. Attribution of biological activity associated with soil structure 

modification is not a trivial exercise but a methodological approach using Near Infrared 

Spectrometry (NIR) allowed the separation of soil aggregates produced by soil invertebrates 

and roots living in the same soil125. 

Vertical and horizontal water transport through and over the surface of soils is, however, a 

‘communicating vessels’ problem with strong trade-offs. If water flows over the surface it may 

cause erosion but it reduces the problem of leaching, and vice versa. A more detailed 

examination of by-pass flow, however, made clear that macroporosity can drain excess water 

without much effect on solute transport in mesopores, especially where the latter benefit 

from physico-chemical ion adsorption acting as an additional safety net126. Later versions of 
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the WaNuLCAS model127 have included such processes and allow the dynamics of soil 

structure, bypass flow and root-based safety nets for leaching nutrients to be quantified. 

In Burkina Faso, with yearly rainfall ranging 570–1180 mm, groundwater recharge was 

simulated to be the equivalent of 2–14% of the total gross water input. A combination of the 

measurement and modelling of drainage and transpiration in agroforestry parkland revealed 

that intermediate density of trees (5–25 trees ha-1 based on the assumption that 100–0% of 

transpired water came from below 1.5 m depth) can maximize groundwater recharge while at 

higher stockings there was a trade-off between tree cover and available water128. 

The soil environment may well host and interact with the most complex biological community 

once we account for scale129. Soil biota (for example, microbes, invertebrates) mostly 

contained in the upper few decimetres of soil are extremely diverse and make important 

contributions to a wide range of ecosystem services that are essential to the sustainable 

function of natural and managed ecosystems130,131. New high-throughput DNA profiling 

techniques are supporting efforts to assess the global distribution of soil biota and the 

relationship of belowground biodiversity to above-ground biodiversity132. Soil biota directly 

influence soil fertility by mobilizing nutrients133 and form soil structures134, increasing water 

infiltration and soil C storage and decreasing soil erosion. Therefore, in order to understand 

the distribution and diversity of soil organisms and how they respond to disturbance, be it 

agricultural practices or climate change, it is necessary to monitor the soil and environmental 

quality that is required for sustaining land health in agricultural ecosystems135. Strategies for 

maintaining native biota of farm soils, such as mycorrhizal inoculum potential, are generally 

preferable to inoculation strategies136,137. Recent global studies show that preservation of 

plant biodiversity is crucial to maintain multiple ecosystem functions like nutrient cycling, 

plant productivity and carbon storage, and also to buffer the negative effects of climate 

change138. Slash-and-mulch agroforestry systems show greater abundance of soil macro-

fauna than native forest, suggesting that maintenance of soil cover with organic materials of 

different qualities promotes favourable conditions for soil biological activity139.  Comparison 

of adjacent agricultural plots with and without trees show that tree presence increases 

abundance of several groups of soil biota140. Further, greater soil biological activity occurs 

near trees but the effect is greater for some tree species than for others141. This is likely 

related to differences in plant functional traits142. Trees can be considered as ‘hot spots’ of 

biological activity and play a major role in maintaining and promoting soil biological activity 

responsible for many of the functions that underpin soil-mediated ecosystem services143. 

Farmers’ perspectives and knowledge of soil biota together with scientific knowledge 

contributes to a better understanding of tree–soil biota interactions in time and space that 

allow design of diverse cropping systems that can sustain multiple functions required for the 

adequate provision of ecosystem services144,145,146,147. 

5. Soil-carbon dynamics and greenhouse-gas emissions from agroforestry systems 

The ASB program was the first to establish a cross-continental network of sites with consistent 

measurement of above- and belowground carbon stocks of forests and forest-derived land 

uses in the humid tropics148. A review of the way soil carbon stock varies with soil type, 

elevation (temperature) and land cover introduced the concept of C-reference values and 

associated soil carbon deficits149, taking natural forest soils with the same texture, mineralogy, 
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pH and elevation as the basis for a pedotransfer function. The empirical relationships 

between texture and soil-carbon content were aligned with the assumptions and process 

descriptions of the Century model; attempts to measure the ‘functional’ fractions represented 

in the model remained partially unsuccessful, however150. Analysis of carbon dynamics in 

aggregate fractions151 could not be directly linked to fully functional carbon-balance models.  

 
Farmers in Na Thau village, Veitnam, take samples in their community forest for soil-carbon 

measurement. Photo: World Agroforestry/Duc Minh Nguyen 

Carbon stocks are additive and allow area-based scaling, making it straightforward to scale 

from plot to landscape152 once the scale-dependent patterns of spatial variation are known. 

The high spatial variability of soil carbon, coupled to costs of sampling and analysis and 

challenges in attributing differences to cause–effect chains, make it unlikely that soil carbon, 

when assessed with current standard methods, can become part of carbon projects153. More 

optimistic perspectives related to methodological improvements will be discussed below. A 

further challenge to such inclusion is the observation that a ‘soil-carbon transition curve’, with 

recovery following degradation, can be observed in response to agricultural intensification, 

and without specific soil-carbon interventions154. Rather than being a primary target for 

interventions and finance as part of climate-change mitigation, soil carbon should be of 

interest from the perspective of buffering of soil water and nutrient content, as part of farm 

resilience and climate-change adaptation155. 

The early measurements of nitrous oxide and methane emissions in relation to tropical land-

use change suggested that such fluxes will generally be small relative to the greenhouse-gas 

effect of tropical forest conversion through changes in (mostly aboveground) carbon stocks. 

Specific for the use of N2 fixing shrubs and trees in agroforestry, where N-rich mulch is left on 

the soil surface without incorporation into the soil, high emissions of nitrous oxide are 

possible and were measured in shaded coffee systems156. In terms of net greenhouse-gas 
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effects, the jury is out to determine whether biological N2 fixation by trees is friend or foe157; 

the likely answer is that it depends on how and where such trees are used. 

6. Soil/land health surveillance  

ICRAF’s work on low-cost, rapid, soil characterization using diffuse reflectance spectroscopy 

began with the use of field spectroscopy in combination with Landsat imagery to trace 

sources of soil erosion in Lake Victoria158. This early work, using the visible-near-infrared 

(VNIR) wavelength range, also showed the potential for using soil reflectance to measure 

management-induced changes in soil quality in long-term trials159. This was later 

demonstrated at landscape scale in land-use change studies in Madagascar160 and along a 

tropical forest–cropland chrono-sequence in Kenya161. A scheme for the use of spectral 

libraries as a tool for building risk-based approaches to soil evaluation was demonstrated for 

a diverse library of over 1000 topsoils from eastern and southern Africa, including 

development of spectral diagnostic tests for screening soils with respect to critical soil-fertility 

limits162. The global applicability of soil spectroscopy was further demonstrated using a global 

soil library based on archived samples at the US National Soil Survey Center using VNIR163 and 

for available samples from the International Soil Reference and Information Centre global 

archives using mid-infrared spectroscopy164. 

Infrared spectroscopy uses a different set of principles than conventional soil-fertility tests, 

providing a single multiple-utility measure of soil-production potential and response to 

management165,166. With IR, soils can be characterised in a single 30-second measure that 

requires no chemicals, only light. The shapes of infrared spectra respond to the basic 

molecular structure of mineral and organic composition of soils and their interactions. It is the 

organic–mineral composition that determines soil functional properties, including a soil’s 

ability to retain and supply different nutrients and water, nitrogen mineralisation capacity, soil 

charge characteristics, soil structural stability and ability to resist soil erosion, and amount of 

soil organic carbon in different pools and its protection. Although calibration to conventional 

soil tests has been used as an intermediate step, the ultimate concept behind the spectral 

approach is to calibrate soil and crop responses to management directly to infrared spectra 

and completely by-pass the need for conventional soil tests167. 

The ability to derive spectral indicators of soil fertility was demonstrated in several studies168 

that successfully calibrated soil-condition classes, based on ten commonly used agronomic 

indicators of soil fertility, to both soil reflectance measured in the laboratory and Landsat TM 

reflectance, which permitted mapping of the index. The spectral index also related to δ13C 

dynamics associated with historic land-use changes, similar to other studies that spectrally 

discriminated forest–cropland chronosequence classes169. A similar approach was 

successfully used for spectral prediction and mapping of soil-fertility classes in Mali170, while a 

similar study171 calibrated principal components of soil-fertility variables to spectra to assess 

the prevalence of soil-fertility constraints on farm fields in Kenya.  

Several studies have shown strong relationships between observed or measured soil erosion 

in the field and laboratory-measured soil spectra. A study in Kenya’s Nyando River Basin172 

was able to spectrally discriminate ground visual observations of three ordinal erosion classes 

with validation accuracies of 78%. A similar approach in Kenya’s Saiwa River Basin173 obtained 
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validation accuracies of 72%, with additional validation of the erosion classes using soil 137Cs 

concentration data. An erosion–deposition index was developed174 as a tool to rapidly screen 

soils in the Nyando River Basin into eroded, intact or depositional soil classes based on a 

spectral distance index using sediment spectra as a reference library. The spectral index was 

validated using 137Cs analysis and soil spectra were also used to interpolate 210Pb 

concentration in sediment cores. The combined data allowed a sediment budget for the basin 

to be constructed as well as the historic time trends in soil erosion from 1900. 

Soil spectroscopy was shown to be able to predict various soil-carbon fractions and their 

mineralization rates. Mid-infrared (MIR) spectroscopy was used to predict the concentration of 

organic-carbon fractions present in a diverse set of Australian and Kenyan soils175. The 

coefficient of determination of measured versus predicted data (r2) ranged from 0.97 and 0.73 

for total organic carbon, particulate organic carbon, and charcoal carbon. Soil spectra were 

also shown to predict carbon mineralization rates from different soil physical fractions in two 

contrasting soil types176. At the same sites, mid-infrared spectra were used to interpret 

functional groups to help elucidate biogeochemical mechanisms that determine the fate of 

carbon inputs in soils and organic matter stabilization by aggregates177. Removing the mineral 

soil spectra in Alfisols, obtained from heated soils, did not improve spectral calibrations of soil 

organic carbon, indicting the robustness of the spectral method178. 

Reflectance spectroscopy was shown to be useful for predicting organic resource quality for 

soil and livestock management based on nitrogen, lignin and soluble polyphenol 

concentrations179,180. Validation r2 of >0.8 were obtained for prediction of in vitro dry matter 

digestibility (IVDMD) and C and N mineralization for a diverse range of crop and tree residues 

of varying quality181,182,183. NIR for determination of crude protein content in cowpea (Vigna 

unguiculata) leaves was also demonstrated184. 

Infrared spectroscopy can enable an evidence-based diagnostic surveillance approach to 

agricultural and environmental management in developing countries185, based on the 

scientific principles used in public health surveillance. Infrared spectroscopy was proposed as 

a rapid screening tool for assigning samples to case or reference and allowing 

characterization of the health of systems at scale using population-based sampling. The 

diverse range of applications of infrared spectroscopy in agriculture and environment was 

reviewed. 

In response to the need for objective, quantitative and cost-efficient methods for assessment 

of land health to justify, target and prioritize investments, the diagnostic surveillance 

principles were taken further to form a conceptual framework for wide-area soil and land-

health surveillance186,187. Land health is defined as the capacity of land to sustain delivery of 

ecosystem services and is a prerequisite for wise ecosystem management and sustainable 

development. The soil spectroscopy methods were key to enabling this approach by providing 

a soil analytical tool that could be applied cost-effectively at scale. Land-health surveillance is 

hinged on systematic georeferenced field observations based on probability sampling (Land 

Degradation Surveillance Framework/LDSF)188,189, so that inferences can be made back to the 

target area sampled. Georeferenced soil spectral estimates of soil properties are statistically 

modelled to remote sensing covariates so that the models can be applied back to every pixel 

on the satellite imagery to provide digital maps of soil properties. The report and 
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accompanying atlas190 illustrate the land-health surveillance concepts with a case study in the 

West African Sahel, presenting results on regional remote-sensing studies of historical 

changes in vegetation growth and rainfall patterns in the area, indicating land-degradation 

trends, and on field-level assessment of land degradation in Mali. This combination of 

principles and scientific and technical advances formed the basis for the Africa Soil 

Information Service (AfSIS).  

ICRAF played a foundational role in the establishing AfSIS. The project has implemented the 

first ever probability sample of African land health and soils, based on a set of 60 100-km2 

sentinel sites, providing a baseline for future monitoring of soil-health changes 

(www.africasoils.net)191. Spectral measurements were performed on all samples, while 

conventional reference measurements were done on a 10% random subsample192. A 

centralized African soil spectral prediction service is being piloted based on Bayesian Additive 

Regression Trees. This will allow spectrometer users to submit batches of spectra online and 

obtain predictions of soil properties with uncertainties given for each sample. Samples that 

are spectral outliers or have large prediction error can be submitted to the ICRAF laboratory 

for characterization and adding to the calibration library. This service could drastically reduce 

the need for conventional soil testing. 

 

Figure 4.2 Portable mid-infrared 
spectrometer being used for rapid 
characterization of soil samples 

 

In support of this initiative, ICRAF established a globally unique, Soil-Plant Spectral Diagnostics 

Laboratory, which focuses on analysing soils using only light (infrared, x-ray, laser). The 

laboratory established Fourier Transform near- and mid-infrared spectroscopy as a 

foundation for calibration transfer across a network of spectrometers. The light-based 

technologies have been extended to: benchtop x-ray diffraction for mineralogical analysis; 

total x-ray fluorescence for total element analysis193 in soils, plants and water; handheld x-ray 

fluorescence spectroscopy; and laser diffraction particle size analysis for dry and wet 

aggregate stability, for which standard operating procedures are available at: 

http://worldagroforestry.org/research/land-health/spectral-diagnostics-laboratory. The 

laboratory supports a soil spectroscopy network spanning 10 African countries, to which it 

provides scientific and technical backstopping, including on-site training. Extensive support 

has been provided towards the establishment of the Ethiopia Soil Information System 

(http://www.ata. gov.et/projects/ethiopian-soil-information-system-ethiosis/). To enable easier 

access to soil spectral calibration techniques, ICRAF has developed the soil.spec software 

http://www.africasoils.net/
http://worldagroforestry.org/research/land-health/spectral-diagnostics-laboratory
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package in R (http://cran.r-project.org/web/ packages/soil.spec/soil.spec.pdf) and now runs an 

international soil spectroscopy training course. 

Land-health surveillance approaches supported by soil spectroscopy are being applied in a 

number of sustainable land management projects in 10 African countries and in the CGIAR 

pan-tropical sentinel sites initiative. These include applications such as mapping soil carbon in 

rangelands194, monitoring and degradation prevalence and soil functional properties in 

Ethiopia195, and studying patterns in soil faunal and microbial activity in landscapes196. Soil 

spectroscopy has also been used to characterize patterns of variability in soil fertility in 

smallholders’ farming systems197,198,199,200. Current applications include a pilot on integrating 

monitoring of soil fertility on farms into the World Bank Living Standards Measurement Study 

and soil monitoring in an integrated monitoring system for ecosystem services in agricultural 

landscapes (www.vitalsigns.org). Soil spectroscopy is also now being used by two private soil-

testing services in Kenya. 

Systematic application of land-health surveillance has the potential to generate improved 

understanding and predictive ability of agricultural systems and natural resources at multiple 

scales and improve intervention decision planning and impact assessment. Technological 

advances will lead to reliable handheld and mobile phone-based spectrometers and put the 

technology in the hands of farmers. The CGIAR can play an important role in building up 

centralized, online spectral calibration and advisory services. Digital mapping techniques 

based on Bayesian spectral-spatial one-step modelling with prediction uncertainties 

generated are already in development. These scientific and technical advances are paving the 

way for a new paradigm of predictive agronomy and crop breeding whereby response trials 

are co-located with soil-spectral measurements and remote-sensing observations. This could 

greatly enhance our ability to predict and map uncertainty in responses to soil and crop 

management and perhaps by-pass conventional soil tests. While the biophysical 

understanding of soil management has received much attention, there is need for much more 

attention on demonstrating the economic value of soil ecosystem services and improved soil 

management practices, and to better integrate soil information into decision-making 

processes201,202. 

7. The challenge of demonstrating development impact through soil changes 

While the balance that draws us towards direct solutions for urgent problems of poverty, food 

security and environmental destruction swings back periodically to the equally pressing needs 

of scientific rigor and generalizable public goods, ICRAF as a CGIAR research centre has a long 

history of trying to satisfy all and debating where the best position is along the curve. Rather 

than choosing one point, it is important that the balance can swing.  

From a time when ‘packaged technology’ was seen as a generic answer to local development 

challenges of many farmers in many places, we have moved forward to a greater appreciation 

of diversity. Spatial variability and diversity have often been seen as a problem in that they do 

not allow simplistic perspectives on scaling up. As ‘homogeneity’ has often been used as a site-

selection criterion for field experiments, because it increases the chance of ‘statistically 

significant’ treatment effects to be seen with practically feasible levels of replication, scientists 

reviewing experimental evidence have a biased view of the world203. Technologies that were 

http://cran.r-project.org/web/%20packages/soil.spec/soil.spec.pdf
http://www.vitalsigns.org/
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carefully packaged by scientists are generally unpacked by farmers, who will adopt the parts 

they like and find new ways around the parts they don’t204,205,206,207. Having learnt from this 

experience, science and extension bodies developed a more modest approach to presenting a 

basket of options, with attention to risk management and the question of how many eggs 

should be put into each basket208. 

Unfortunately, the funders of international agricultural research are fascinated by the 

numbers of farmers and the area of land that can be claimed to benefit from ‘improved 

practices’ and are linking funding decisions to a ‘beauty contest’ among alternative programs 

judged on claims to impact. A direction that offers that one ‘can eat development cake’ and 

have good science as well, is seen to be in ‘research in development’209, with a focus on fine-

tuning the baskets of options to what might have a chance to be accepted, and an equal 

attention to what and how farmers choose and why they do so, with social and gender 

stratification replacing the abstract, ‘standard farmer’ perceived in the past. This gives an even 

greater weight to taking local knowledge seriously: not only does it point to empirical 

experience from which formal science can learn; it also suggests a language in which scientific 

findings can be communicated back, alongside the baskets of options. Science in that 

perspective can be useful by testing and validating simple decision trees at component 

level210. 

 

Figure 4.3 Key concepts of 
research in development, which 
require continued diagnostics as 
part of monitoring and evaluation 
and sentinel approaches, explicit 
theories of change that address 
both variation in circumstances 
encountered in ‘scaling out’ and 
changes in dynamic properties as 
a response of ‘scaling up’, and 
that may lead to change of theory 

 

Change in soil properties tends to be slow compared to aboveground changes, and this ‘slow 

variable’ characteristic has consequences for impact studies. On one hand, it implies that 

changes in soil conditions, whether negative (depletion, degradation) or positive (restoration), 

once set in motion can be expected to have long lasting, negative or positive, effects that add 

to the importance of observed trends. On the other hand, slow change, combined with the 

high inherent spatial variability of soils, makes it difficult to obtain convincing evidence of any 

change at all. A simple spreadsheet model211 (Figure 4.4) illustrates how a sampling of soil 

conditions found under different land-use systems can lead to strongly biased conclusions 

about ‘effects of land use on the soil’ if it does not account for the degree to which local 

variation of soil conditions informed land-use patterns in the first place. 

Positive or negative changes in soil conditions in response to business-as-usual development, 

modified by specific development interventions, impact on many stakeholders. The most 
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obvious ones are literally downstream, as the soil controls the switch between overland flow, 

with associated flashiness of rivers, and infiltration for slower ‘interflow’ in saturated soils and 

groundwater replenishment in other situations. The contrasting interests between ‘water 

harvesting‘, where overland flow is to be stimulated and used, versus beneficiaries of 

infiltration has been noted before. The recent discourse on ‘rainbow water’ suggests that 

there are also ‘downwind’ stakeholders, whose interests may differ from those 

downstream212.   

 

Figure 4.4 Illustration of the way land use (LU) effects soil properties, together with the preferential 
positioning of land uses in specific parts of a landscape, and influence survey results, with the possibility of 
apparent effects having opposite signs to real ones213 

Further progress in soil science at the ICRAF will have to address the multiple agendas of 

global articulation of the ambitions for sustainable development, with growing evidence that 

forms of agroforestry can support many of the goals214, national green economy ambitions 

with land uses that minimize damage or restore soils after phases of degradation215, and 

farmer’s preferences and choices. The complex involvement of multiple actors in what is 

perceived to be ‘sustainable’216 suggests that a close linking of technical and social expertise 

will remain important for impact-oriented fundamental soil science in agroforestry. 
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