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CHAPTER FIVE 

Belowground resource sharing in mixed tree–
crop systems: methods to better understand 
belowground interactions 
Jules Bayala, Ingrid Öborn, Christian Dupraz 

Highlights 

• Research in agroforestry moved from a descriptive stock-taking phase to efforts 
to understand and quantify processes in the sharing of growth resources, 
above- and belowground 

• Root distribution and structure are key to understanding of the interactions and 
processes involved 

• Deployed methods range from basic but labour-intensive invasive approaches 
(coring, trenching, excavating and rhizotrons) to more sophisticated, expensive 
but non-invasive methods: X-ray Computed Tomography (CT), Gamma-ray 
Computed Tomography, Neutron Tomography, Magnetic Resonance Imaging 
(MRI) and Nuclear Magnetic Resonance (NMR) 

• Despite the advances, root research in mixed crop-tree systems remains 
challenging because of the difficulty in finding the relevant spatial and temporal 
scales for real-world high heterogeneity soil conditions 

5.1 Introduction 

Cropping systems based on carefully designed species’ mixtures over time (in terms of crop 

sequences) and/or space (within a farm or landscape) reveal many potential advantages 

under various conditions, both in temperate and tropical agriculture1,2,3,4. In general, annual 

crops are expected to be relatively shallow-rooted while perennial plants, including trees, can 

have roots extending deep below the crop root zone, giving a foundation to the safety-net 

hypothesis5. The safety-net hypothesis (intercepting mobile nutrients leaching from crop root 

zones) complements the nutrient-pump hypothesis (uptake of deep soil resources of relatively 

immobile nutrients)6,7. However, the actual situation of relative root distributions is more 

complex8,9,10 and dynamic with seasonal shifts in the soil depth from which water and 

nutrients are taken up11. In some situations, trees and crops compete for nutrients and water 

in the same soil layer12,13, even though the impact on crop performance and yield may vary 
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according to rainfall14 and nutrient availability15,16,17. Therefore, the potential benefits of trees 

in mixed systems depends on complex spatial and temporal interactions involving a large 

number of factors18,19,20. Strong positive effects (for example, through increased nutrient 

availability) can be offset by strong negative effects (for example, via shading), making 

optimization complex and context dependent21.  

The past decades of agroforestry research have revealed many interacting processes in the 

sharing of, and competition for, belowground resources, made progress in their quantification 

and established tools to study mixed tree–crop systems, as this chapter shows. However, the 

manner in which net effects depend on context still requires empirical verification of 

simulation models. 

5.2 Complexity of the structure of agroforestry practices 

Modern agriculture has been characterized by the promotion of sole crops in rotations or 

monocultures with the use of external inputs (germplasm, fertilizers, pesticides), which did not 

reach poor farmers living in the most vulnerable agro-ecologies, leading to deforestation 

when new areas of land were claimed for agriculture. This has resulted in reduced ecosystem 

services’ delivery: 1) provisioning services (food, fuelwood, fibre, biochemical, and genetic 

resources); 2) regulating services (climate, disease control, water regulation and purification); 

and 3) supporting services (soil formation, nutrient cycling, primary production and provision 

of habitat). Such decline highlights the critical role of trees in farming systems, as attested by 

findings of a structured review of the roles of trees on farms for provisioning of ecosystem 

services in sub-Saharan Africa22. The majority of studies reviewed showed beneficial effects of 

trees on crops (58%), such as enhancing water and nutrient cycling, in particular in semi-arid 

areas. In 28% of the reviewed studies, no effects were found and, in 15%, crop yields were 

declining owing to tree–crop competition, for example, modification of the microclimate23. 

Traditional mixed farming systems are repositories of principles that can, if understood and 

correctly applied, make modern agricultural systems more productive and more resilient24. In 

other words, it is about getting the mixtures fitting well into the context such that trees 

acquire resources that crops would not otherwise use25. Studies of traditional systems that 

combine trees, crops and livestock on the same land unit have shown greater efficiency in 

using resources (water, nutrients and light)4,26 than an exclusively annual-crop-based 

agriculture while they also are more resilient to climate change24.  

Such conclusions come from a long process that started by descriptive categorization of 

agroforestry systems and quantification of their benefits (production, effects on soils etc.). In 

contrast, experiments in which fast-growing, shallowly rooted trees were combined with 

cacao were found to make the cacao more vulnerable to dry years27.  

An on-station phase of research, where external variation could be partially controlled, helped 

to identify mechanisms of the tree–soil–crop interactions and critically test key hypotheses of 

safety-net functions28,29,30 and the synchrony of nutrient supply by mineralization and crop 

demand31. However, findings of studies on interactions revealed that belowground niche 

differentiation did not hold everywhere as there were trade-offs between the beneficial 

effects of trees on soils and competition with crops for soil resources32,33. Indeed, many 
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studies showed that root distribution of most of the tree species coincided with the upper soil 

layers occupied by annual crops8,34,35 and that tree root systems may be highly opportunistic 

and reactive36. This property of accumulating maximum fine roots in the upper soil profile 

gives the plant an easy access to moisture and nutrients from the most fertile topsoil while 

the primary roots growing deeper help in extracting more moisture37. The fact that niche 

differentiation was found to not occur everywhere38,39 triggered a range of studies on tree–

crop root competition about ways to manage them through, for instance, root pruning40,41 or 

crop competition42. Such efforts revealed that competition may induce changes in the 

phenology, activity and distribution of the roots of one of the competing species in such a way 

that competition is reduced or avoided43;44,45;46. 

5.3 Methods for research on belowground interaction at plot level 

Research on belowground interactions emerged from the evolution of agroforestry science 

and the corresponding changes in research paradigms from descriptive studies to those on 

processes in growth resources sharing47. Thus, it was only during the 1990s that research on 

soils and root processes in agroforestry systems were emphasized48,49. Such research covered 

root distribution, water and nutrients content and uptake. Various categories of studies have 

been conducted, including observation of existing practices, field trials, station experiments 

and modelling13,50. This diversity of types of studies has also involved various experimental 

designs, including transects from one tree or shrub for scattered naturally regenerated trees 

(parklands, dehesa, farmer-managed natural regeneration) or from a line/row of trees for 

planted ones. 

5.3.1 Root distribution 

Because of the important role of roots in taking up water and nutrients for plant growth, they 

have attracted the attention of scientists both in studies of natural ecosystems and cultivated 

agro-ecosystems51. The studies started with very rudimentary methods, like core sampling 

and samples washed to extract roots, soil profiles to describe root distribution, excavating to 

study root system structure up to the recent use of imagery techniques. More broadly, 

methods have evolved from invasive field methods to non-invasive ones that are mostly 

restricted to laboratory conditions.  

Invasive methods have helped describe root system architecture and distribution as an 

indication of the volume of soil explored and potential resource uptake. Basic methods for 

observing and quantifying tree and crop root biomass and length involve: 

• Core soil sampling/monoliths and washing roots from soil52 combining sieves or 

more automated root washers. Extracted roots are used to estimate a range of 

variables (weight, length, root length density, specific root length etc) manually or by 

scanning equipment and related software 

• Trenching to use the wall profile for root distribution studies53 

• Excavation around an individual tree to a certain depth and distance (up to the limits 

of the crown width) that allows observations of root architecture. This method is 

labour intensive 
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• Root pruning by trenches as a root management tool to limit competition for water 

and nutrients38,54 

• Rhizotron technology allowing direct observations of fine root dynamics, including 

production, mortality, decomposition and turnover55;56,57,58. The forms vary from 

transparent tube to transparent plexiglas pane, or inflatable tubes59. However, the 

rhizotron approach has some limitations, including its inability to provide information 

regarding the chemical composition of fine roots and the rhizosphere, the difficulty of 

installing the tubes in stony soils, and soil disturbance caused by tube installation60. 

Inflatable rhizotrons avoid the gaps that tend to form between rigid structures and 

soil particles, improving visibility of roots and making turnover rates more realistic 

 
Invasive methods can provide a range of information on roots interacting with soil profiles 

and companion plants but uptake functions are also controlled by root age and specific 

interactions in the rhizosphere61,62,63,64 that require different methods. Non-invasive methods 

are meant to provide further insights into dynamic interactions because they cause no 

damage to the root systems. The use of 3D visualisation techniques to measure roots in soil 

started in the early 1990s and they include X-ray Computed Tomography (CT), Gamma-ray 

Computed Tomography, Neutron Tomography, Magnetic Resonance Imaging (MRI) and 

Nuclear Magnetic Resonance (NMR)65,66. A more detailed description of these techniques 

emphasized their continued development and limitations60.  

5.3.2 Soil water content and uptake 

Sampling patterns for soil-water measurement vary according to the studied agroforestry 

practice: transect, random etc. Methods used can measure water content, water potential or 

its drainage. For water content, the oldest and most accurate method is gravimetry (weighing 

fresh and dried samples). More sophisticated and automated tools were developed but they 

all use surrogates as proxies for soil-moisture content87. Although changes in water content in 

the surface soil horizons are commonly measured gravimetrically, more sophisticated 

techniques allow rapid automated measurements. Time Domain Reflectometry (TDR)67 is 

commercially available with substantial advances in its use to measure soil-water content and 

bulk soil electrical conductivity68,69. A variety of TDR probe configurations provides users with 

site- and media-specific options. Advances in TDR technology and other dielectric methods 

offer the promise not only of less expensive but also more accurate tools for electrical 

determination of water and solute contents70 that can be used to measure soil-water content. 

Another technique for measuring surface soil-water content is the Surface Insertion 

Capacitance Probe (SCIP)71.  Although this approach was initially manual, it has also 

undergone tremendous development and can be automated and remotely controlled using a 

wireless network72. Despite the fact readings may be sensitive to supply voltage, temperature 

and bulk soil electrical conductivity, SCIP sensors are low cost and can be deployed in wireless 

network, allowing coverage of large spatial areas73,74. 

At depths below 15 cm, soil water content has often been measured using neutron 

probes75,76. The neutron probe is one of the most appropriate approaches for soil-water 

balance studies because access tubes can be installed without disturbing the soil profile 

outside the tube, except in gravelly or stony soils, and the access tubes can be of indefinite 
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length. This technique has some limitations for changes in water content at shorter periods 

than a week. 

Water potential can be measured using tensiometers. However, tensiometers have the 

disadvantage that they only work for water potentials down to c. -80 kPa and so may be off-

scale for much of the time in semi-arid or arid regions. Soil-water potential can also be 

measured using gypsum blocks77, which function down to much lower water potentials 

(around -1500 kPa) but may exhibit hysteresis and must be properly calibrated to obtain 

accurate readings. The high maintenance requirements of gypsum blocks limit their research 

capability. Uncalibrated gypsum blocks were used to provide qualitative information 

regarding two-dimensional soil drying and wetting patterns in agroforestry systems during 

several rainy seasons in Kenya78. Various other approaches for monitoring soil-water 

content79,80 include gamma-ray attenuation, capacitance probes, pressure plates, ground-

penetrating radar and remote sensing of soil-surface properties. 

 

  

 

Figure 5.1 Examples of soil-water content sampling patterns used in mixed tree–crop systems 
Note: Measurement points (x) can be arranged (a) perpendicular to the tree line, (b) at radial distances 
from individual trees and (c) in a two-dimensional grid81 

Six approaches for determining drainage82 are porous cups, porous plates, capillary wicks, 

pan lysimeters, resin boxes and lysimeters. The most basic approach is the use of lysimetry to 

capture drainage-water volumes using buried containers over various time periods. Several 

types of lysimeter have been employed, including pan lysimeters, equilibrium-tension 

lysimeters and wick lysimeters, each with their own advantages and disadvantages83. Recently 

developed passive-wick lysimeter using an inert wicking material, such as fibreglass or rock 

wool83,84 can be linked to dataloggers to transmit drainage data to a remote host85. Collecting 
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soil-pore water or drainage water will also allow for chemical analysis, for example, of pH, 

plant nutrients and other elements86. Drainage volumes can be estimated indirectly87 and 

through modelling approaches88,89. 

Stable isotopes (δD, δ18O, and δ13C) provide valuable non-invasive methods for determining 

of the soil layers of water uptake90. Soil and plant water potential91 or ground-penetrating 

radar and plant δ18O ratio92 to produce more accurate information. 

5.3.3 Soil nutrients and uptake 

Measurement designs for soil nutrients either in situ or by soil sampling are similar to those 

used for root distribution and soil-water content. Taking soil samples at various distances and 

depths, analysing them and comparing the situations with agroforestry practice without 

(control) has been the most common approach. Trees component of agroforestry practices 

are in general expected to directly contribute to carbon (photosynthesis and biomass 

recycling) and nitrogen (N2 fixation and biomass recycling) and indirectly by taking up other 

nutrients from deep soil layers and recycle them in upper soil layers through the litter and 

root decay. Laboratory analyses have so far provided the most accurate data but there is on-

going development of devices allowing in situ measurement of the concentrations of soil 

nutrients. Such devices still have a number of limitations. For laboratory approaches, wet 

chemistry is being combined with Near Infrared (NIR) methods93,94,95, which allows analyses of 

thousands of samples and in very short periods of time. NIR methods still require a lot of 

improvement about the accuracy of the measurements. 

For the uptake, again like water, stable isotopes (such as 15N and 31P) have been used for 

testing the safety-net hypothesis of niche differentiation between components of agroforestry 

practices (28,96,97). Other soil parameters measured in studies about the belowground 

interactions include soil texture, pH, bulk density, porosity, fauna abundance and diversity13. 

5.4 From plot to farm and landscape: modelling approaches for scaling 

Models are a way of understanding the implications of processes we know sufficiently well to 

structure and parameterize the models13. These models are approaching the interactions 

from three different angles: separating positive and negative effects, establishing the resource 

balance, and modelling the resource capture21. 

5.4.1 Plot-level models of belowground tree–crop interactions 

Plot-level models ‘without roots’ can be adequate to relate available resources to uptake at 

field scale at a monthly or annual timescale. However, models that use spatial details of root 

distribution are required for accounts of competitive or resource-constrained systems and 

can be classified in four classes98,99:  

i) models that ignore root dynamics and use time-independent root distributions;  

ii) models that incorporate simple root dynamics described by a generic distribution 

model independent of both aboveground processes and soil conditions;  

iii) models that simulate root-system growth in response to conditions in the 

aboveground parts of the plant but without an interaction with soil environment; and  
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iv) models that simulate the growth of a root system that senses and reacts to local soil 

conditions as well as to the conditions in the aboveground part of the plant. 

 
Most agronomical or forestry models at the plot scale include a one-dimensional root model 

and constrain the root distribution by a negative exponential decrease with distance (vertically 

and laterally) from the plant base104. A step forward was achieved with recent models that 

describe root systems in 2D or 3D, dynamically, and consider dynamic responses to local soil 

conditions. Two models designed for agroforestry systems include these features: 2D for 

WaNulCas102 and 3D for Hi-sAFe (100,103,101). The Hi-sAFe model includes a continuum 

representation to simulate the growth of both fine and coarse root systems in 3D 

heterogeneous soil conditions and was designed with a 3D ‘voxel automata’ approach36. The 

Hi-sAFe root model is driven by the diffusion of fine roots across a soil compartmentalised in 

voxels, and linked by a coarse root system that is self-generated by the model. It provides a 

generic and flexible root model that can react to the soil heterogeneity that is always induced 

by the competing rooting systems of trees and crops102. 

5.4.2 Upscaling to farm and landscape levels 

Almost all the studies of belowground interactions have been conducted at the plot level while 

key issues are at farm and landscape levels, bringing in more complexity. To address such 

complexity, several agroforestry models were developed (Table 5.1). However, they all show 

intrinsic limitations, including insufficient flexibility, restricted ability to simulate interactions, 

extensive parameterization needs, lack of model maintenance and with updating and 

investments needed8,37,103. Even though models that are maintained can now in their 

advanced versions describe root systems in 2D or 3D and dynamically consider changes in soil 

conditions100,104,105, efforts are still needed to move from plot level to landscape scale. 

Table 5.1 Different models used to study interactions in mixed tree–crop systems and their 
main characteristics  

Model Components Unique features for below-
ground modelling 

Model source code 

Historical 

SCUAF106 N/A Effect of trees on soil conservation 
and carbon 

** 

ALMANAC107 Water, carbon, nitrogen Supply, uptake, competition ** 

COMP8108 Water, carbon, nitrogen Supply, uptake, competition ** 

CropSys109 Water, carbon, nitrogen Supply, uptake, competition ** 

GAPS110 Water, carbon, nitrogen Supply, uptake, competition ** 

WIMISA111 Water, carbon, nitrogen Supply, uptake, competition 
Windbreak Sahel 

** 

HyCAS112 Water, carbon, nitrogen Supply, uptake, competition ** 

HyPAR113 Water, carbon, nitrogen Supply, uptake, competition ** 

Still actively maintained 

WOFOST114   https://www.wur.nl/en/Re

search-Results/Research-

https://www.wur.nl/en/Research-Results/Research-Institutes/Environmental-Research/Facilities-Products/Software-and-models/WOFOST.htm
https://www.wur.nl/en/Research-Results/Research-Institutes/Environmental-Research/Facilities-Products/Software-and-models/WOFOST.htm
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Model Components Unique features for below-
ground modelling 

Model source code 

Institutes/Environmental-

Research/Facilities-

Products/Software-and-

models/WOFOST.htm 

WaNuLCAS115 Light, Water, nitrogen, 
phosphorus, carbon 

Dynamic tree and crop root 
systems 

http://www.worldagrofor
estry.org/output/wanulca
s/download  

APSIM116,117 Water, carbon, nitrogen, 
phosphorus 

Crop rotations and land 
management 

http://www.apsim.info/ 

Hi-sAFe100,101,118 Light, water, nitrogen, 3D 
above-ground, 3D 
belowground 

Dynamic and opportunistic tree 
and crop root systems  

https://www1.montpellier
.inra.fr/wp-inra/hi-
safe/en/ 

YIELD-SAFE119,120   http://www.isa.ulisboa.pt/
cef/forchange/fctools/con
tent/yield-safe-model  

FARM-SAFE   https://www.agforward.e
u/index.php/en/web-
application-of-yield-safe-
and-farm-safe-
models.html  

LUCIA121 
Land Use Change 
Impact 
Assessment tool 

Light, Water, nitrogen, 
phosphorus, carbon 

 https://lucia.uni-
hohenheim.de/en 

NB: * Model still under active development, ** No longer active; N/A: Note Applicable; italic are agroforestry models. 
WOFOST and APSIM are not but their modular nature has allowed applications in agroforestry 

Source: modified from 50 

 

 

Figure 5.2 101 A simplified, 2D illustration of 
the branch and root pruning management 
interventions in sAFe‐Tree 

Coarse roots are represented by solid lines, with 

diameter proportional to line thickness.  Fine root 

density is proportional to voxel shading, with darker 

colors indicating more fine roots.  Branch pruning to a 

height Hp reduces vertical and horizontal crown radii 

by the same proportion.  A reduction in WAD (and 

consequently LAD) can also be specified.  Root 

pruning occurs along equidistant, parallel lines that 

straddle the tree (zigzag lines; into the page).  Coarse 

roots that are cut by root pruning (dashed lines) are 

killed, along with all downstream coarse and fine 

roots (hatched voxels).  It is possible for vertically 

growing coarse roots to avoid root pruning and 

maintain roots above the pruning depth, as shown on 

the left side of the illustrated scene. LAD: leaf area 

density within the crown; WAD: wood area density 

within the crown. 

https://www.wur.nl/en/Research-Results/Research-Institutes/Environmental-Research/Facilities-Products/Software-and-models/WOFOST.htm
https://www.wur.nl/en/Research-Results/Research-Institutes/Environmental-Research/Facilities-Products/Software-and-models/WOFOST.htm
https://www.wur.nl/en/Research-Results/Research-Institutes/Environmental-Research/Facilities-Products/Software-and-models/WOFOST.htm
https://www.wur.nl/en/Research-Results/Research-Institutes/Environmental-Research/Facilities-Products/Software-and-models/WOFOST.htm
http://www.worldagroforestry.org/output/wanulcas/download
http://www.worldagroforestry.org/output/wanulcas/download
http://www.worldagroforestry.org/output/wanulcas/download
http://www.apsim.info/
https://www1.montpellier.inra.fr/wp-inra/hi-safe/en/
https://www1.montpellier.inra.fr/wp-inra/hi-safe/en/
https://www1.montpellier.inra.fr/wp-inra/hi-safe/en/
http://www.isa.ulisboa.pt/cef/forchange/fctools/content/yield-safe-model
http://www.isa.ulisboa.pt/cef/forchange/fctools/content/yield-safe-model
http://www.isa.ulisboa.pt/cef/forchange/fctools/content/yield-safe-model
https://www.agforward.eu/index.php/en/web-application-of-yield-safe-and-farm-safe-models.html
https://www.agforward.eu/index.php/en/web-application-of-yield-safe-and-farm-safe-models.html
https://www.agforward.eu/index.php/en/web-application-of-yield-safe-and-farm-safe-models.html
https://www.agforward.eu/index.php/en/web-application-of-yield-safe-and-farm-safe-models.html
https://www.agforward.eu/index.php/en/web-application-of-yield-safe-and-farm-safe-models.html
https://lucia.uni-hohenheim.de/en
https://lucia.uni-hohenheim.de/en
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5.5 Way forward 

Accuracy in the measurements of most parameters involved in belowground interactions is 

something to continue to pursue. The work on the belowground compartment remains 

tedious and expensive yet with still a large part of uncertainty in the measurements. 

Therefore, development of methods and tools to better describe processes in mixed cropping 

systems should continue. This includes scale of spatial sharing of belowground resources for 

which modelling has a lot to contribute once processes are well understood. 
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