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ABSTRACT

This study determined the potential effects of present and future climates on the 
geographical distribution of Shorea palosapis (Blanco) Merr. and Shorea polysperma 
(Blanco) Merr in Northern Sierra Madre Natural Park (NSMNP) using Maximum 
Entropy model. A total of seven models were generated for each species: one Climatic-
Only model, four Partial models (combination of four variable groups with climatic 
variables), one Full model (used 30 original variables), and one Final model (used 18 
uncorrelated variables after a series of variable reduction methods). The models’ relative 
predictive performance was evaluated using Area Under Curve (AUC) and True Skill 
Statistics (TSS). The Final model performed best both for S. palosapis (AUC = 0.8763; 
TSS = 0.8176) and S. polysperma (AUC = 0.8626; TSS = 0.8332). Analysis of variable 
importance revealed that species distributions were largely determined by climatic 
variables (34.35%) followed by anthropogenic variables (27.25%) and topographic 
variables (24.15%), while vegetation-related (7.58%) and edaphic variables (6.67%) had 
relatively lesser contribution. The probabilities of occurrence of the species changed and 
were found to benefit from future climate with increasing suitable habitat range. This 
study will provide practitioners with early warning estimates of how climate change may 
affect the distribution of endangered species. Furthermore, this will also assist decision-
makers especially in mainstreaming climate change in the NSMNP management plan to 
better conserve potential suitable habitats of priority species.

Key words: Maximum Entropy, forest trees, climate change, species distribution, 
protected area

INTRODUCTION

The Northern Sierra Madre Natural Park (NSMNP) is 
one of the largest and most diverse protected areas (PAs) in 
the Philippines. It covers a total of 359,486 ha of terrestrial 
and coastal areas in the province of Isabela in northeast 
Luzon. It houses numerous species of flora, of which many 
are rare and endemic but threatened due to habitat alteration. 
Due to its inherent high conservation value, it was selected 
to be one of the ten priority sites of the National Integrated 
Protected Area System (NIPAS). Through the years, 
NSMNP has experienced massive exploitation that led to 
the decline of its forest resources and biodiversity (DENR 
1997; Nordic Agency for Development and Ecology; DENR 
2001). It is believed that climate change will exacerbate 
current conditions of the forests and their biodiversity.

Currently, there is very little knowledge on how future 
climates can affect the potential distribution of forest tree 
species in the Philippines. Prediction of potential suitable 
habitat of these species is critical for conservation and 
monitoring, and is also vital information in the restoration 
efforts of the country. Nowadays, species distribution models 
(SDMs) are increasingly proposed to support conservation 
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decision-making. However, evidence of SDMs supporting 
solutions for on-ground conservation problems is still 
scarce in the scientific literature (Guisan et al. 2013). To 
effectively guide conservation actions, modelers need to 
better understand the decision process, and decision makers 
need to provide feedback to modelers regarding the actual 
use of SDM to support conservation decisions (Guisan 
et al. 2013). This could be facilitated by individuals 
or institutions playing the role of ‘translators’ between 
modelers and decision makers.

In the face of ongoing and future changes in climate, 
species must adapt or shift their geographical distributions 
in order to avoid habitat loss and eventual extinction. 
Species will shift their geographic distribution to remain 
at equilibrium with climate. However, tropical forest tree 
species may not be able to adapt to changing climate due to 
rapid and sustained changes in climate (Feeley et al. 2012). 
This study aimed to assess the consequences of climate 
change on the geographical distributions of S. palosapis 
and S. polysperma in the NSMNP using Maximum Entropy 
(Maxent) Model. Specifically, the study evaluated and 
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compared the relative predictive performance of different
Maxent species distribution models; identified the variables 
that affect the geographical distribution of dipterocarp 
species; and determined the potential suitable habitats of 
dipterocarp species. 

Threatened, indigenous and endemic forest tree 
species in NSMNP were the priority for species distribution 
modeling since their ecological, economical and socio-
cultural values require urgent science-based adaptation 
strategies be developed to protect them. On the other 
hand, environmental variables were chosen based on 
their biological relevance to plant species distribution and 
citation frequency in other habitat modeling studies (e.g. 
Kumar et al. 2006; Guisan et al. 2007a; Pearson et al. 
2007; Muriene et al. 2009). To save a threatened species 
is a critical problem in conservation biology because one 
needs to know first where the species prefers to live and 
what its requirements are for survival (i.e. ecological 
niche) (Hutchinson 1957). There are various SDM methods 
available to predict the distribution of a species (Guisan and 
Zimmermann 2000; Guisan and Thullier 2005; Elith et al. 
2006; Guisan et al. 2007a, b; Wisz et al. 2008). However, 
comparatively few predictive models have been used for 
threatened plant species (Engler et al. 2004). The species 
distribution modeling particularly on trees has opened 
a new perspective in the field of conservation biology. 
Species distribution data is most of the time not available 
and collecting such data is costly and labor intensive. Hence, 
SDMs could be a reliable alternative of conservationist 
since they have in many cases rely on predictive models 
for estimating patterns of species distribution and for 
making conservation strategies. Moreover, SDMs provide 
one of the best ways to overcome sparseness typical of 
distributional data, by relating them to a set of geographic 
or environmental predictors.

A number of recent studies have proven that Maxent 
performs well in predicting species distribution of floral 
and faunal species (Baldwin 2009; Kumar and Stohlgren 
2009; Trisurat et al. 2009 and 2011; Weber 2011; Garcia 
et al. 2013; Singh 2013). Kumar and Stohlgren (2009) 
used Maxent to predict potential habitats of Canacomyrica 
monticola, a threatened tree species in New Caledonia, using 
few occurrence records. Results of Singh (2013) predicted 
suitable habitats for two critically-endangered dipterocarp 
tree species, Shorea johorensis and Shorea inappendiculata, 
in Borneo. Results showed bioclimatic variables had 
insignificant effects, given the study was conducted in a 
relatively small area. However, factors such as land-use 
and tree cover play a prominent role in determining the 
distribution of the two species. In Thailand, Trisurat et 
al. (2009) and Trisurat et al. (2011) studied the effects of 

climate change on the distributions of both evergreen and 
deciduous tree species in peninsular and northern Thailand. 
In the Philippines, Garcia et al. (2013) were the first to use
Maxent in predicting geographic distributions and habitat 
suitability based on changes in climate for 14 threatened 
forest tree species in the Philippines. Of the 14 species, 
seven forest tree species were found to likely benefit from 
future climate with potential increases in suitable habitat 
areas, while the other half will likely experience declines.

 
This study can provide initial understanding on how 

changes in the regional climate will affect the distribution 
of S. palosapis and S. polysperma in the NSMNP. It 
may further improve understanding of species-habitat 
relationships in space and time. The species distribution 
models and habitat suitability maps generated may also 
be used as basis in the formulation of appropriate science-
based adaptation policies, strategies and measures that can 
enhance the resilience of those selected forest tree species 
and their natural ecosystem to current and future climate.

MATERIALS AND METHODS

Study Area

The NSMNP lies on the eastern part of Isabela province 
covering the municipalities of Maconacon, Divilacan, 
Dinapigue and Palanan along the eastern seaboard and San 
Pablo, Cabagan, Tumauini, Ilagan and San Mariano on the 
western side, as bordered by the Cagayan Valley (Figure 
1). It includes the mid-section, which stretches from Aurora 
to Cagayan, of the Sierra Madre Mountain Range. It is 
bounded by the Dikatayan River to the north, Disabuyan 
River to the south, Cagayan Valley to the west and the 
Philippine Sea to the east (Van der Ploeg et al. 2011). 

The NSMNP is home to a large number of 
commercially important but severely threatened tree 
species of the dipterocarp family such as Shorea spp. and 
Hopea spp. It also provides habitats to 240 bird species, 
78 of which are endemic. Two of the birds found in the 
park are the Philippine Eagle (Pithecophaga jefferyi) and 
the endemic Isabela Oriole (Oriolus isabellae), which is 
one of the rarest birds in the world (CI 2011). The park is 
also home to two groups of indigenous people, the Agta 
and the Kalinga, who are highly dependent on its natural 
resources for their livelihoods. About 25,000 migrant 
farmers and fishermen live within the multiple-use zone of 
the park and two million people living in Cagayan Valley 
depend on the ecosystem services provided by the park.

Study Framework

The prediction and mapping of potential suitable 
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uses this relationship to identify species distribution. 

Collection and Selection of Species Occurrence Records

The occurrence records of the forest tree species 
used for this research come from two sources: biodiversity 
assessments conducted in NSMNP under the B+WISER 
program; and georeferenced database developed by Ramos 
et al. (2012) which contains 2,067 records of 47 threatened 
forest tree species of the Philippines. These species are often 
rare and have limited occurrences, posing challenges for 
creating accurate species distribution models. As such, S. 
palosapis (Blanco) Merr and S. polysperma (Blanco) Merr 
with 24 and 27 occurrences, respectively, were selected for 
the species distribution modeling.

Environmental Variables

Thirty environmental variables in 1km x 1km 
resolution were used as potential predictors of species 
distribution. All data were projected and masked to the 
NSMNP boundary and converted to 1 km Environmental 
Systems Research Institute (ESRI) American Standard 
Code II (ASCII) grid format (.asc). The variables were then 
classified into five groups: 1) climatic, 2) topographic, 3) 
edaphic, 4) vegetation and, 5) anthropogenic. In addition, it 
is assumed that environmental variables were stable, except 
climatic variables (Table 1).

Species Distribution Modeling

Maxent modeling software v3.3 was used for this 
study. Pre-selected independent variables based on 
previous studies served as predictors while the occurrence 
records of selected dipterocarp species were the dependent 
variable for the study. The data were then entered into the

habitats for threatened and indigenous species is critical 
in the monitoring and restoration of the declining native
populations. However, a challenge to habitat modeling 
approaches is that the distribution data of these species 
are often sparse and clustered (Ferrier et al. 2002; Engler 
et al. 2004). Nowadays, species distribution modeling 
tools are becoming increasingly popular, and are widely 
used in ecology (Elith et al. 2006; Peterson 2006). These 
models help establish the underlying relationships between 
the occurrence of species in a particular area and its 
environment.

Forest trees species distribution, or species habitat 
requirement is defined by certain environmental variables, 
and the optimal combination of these factors allows 
a particular species to thrive in certain areas. This set 
of environmental variables for plants may directly or 
indirectly affect its patterns of abundance and distribution 
in NSMNP. The variables are: topographic factors, climatic 
factors, anthropogenic factors or threats to species loss, 
edaphic factors and vegetation-related factors (Figure 2). 
Thus, the study emphasizes the interplay of forces between 
environmental variables that affect the overall suitability of 
a given species in a particular region. The Maxent modeling 
technique then recognizes the relationship between the 
known range of the species and environmental factors, and

Figure 1. The location and land cover of NSMNP.

Figure 2. The research framework employed in the study.
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Table 1.  Summary of environmental variables used in the study. 
Variable Variable (Unit) Description/Source

Climatic Factors
Bio 1

Bio 2

Bio 3

Bio 4

Bio 5

Bio 6

Bio 7

Bio 8

Bio 9

Bio 10

Bio 11

Bio 12
Bio 13

Bio 14

Bio 15

Bio 16

Bio 17

Bio 18

Bio 19

Annual mean temperature 
(°C)

Mean diurnal temperature 
range (mean(period 
max-min) (°C)

Isothermality 
     (Bio 2 ÷ Bio 7)
Temperature seasonality 

(C of V)

Max temperature of 
warmest month (°C)

Min temperature of cold-
est month (°C)

Temperature annual range 
(Bio 5-Bio 6) (°C)

Mean temperature of 
    wettest quarter (°C)
Mean temperature of 
    driest quarter (°C)
Mean temperature of 

warmest quarter (°C)
Mean temperature of 
    coldest quarter (°C)
Annual precipitation (mm)
Precipitation of wettest 

month (mm)
Precipitation of driest 

month (mm)
Precipitation seasonality 

(C of V)
Precipitation of month 

(mm)
Precipitation of driest 

quarter (mm)
Precipitation of warmest 

quarter (mm)
Precipitation of coldest 

quarter (mm)

The mean of all the monthly mean temperatures. Each monthly mean temperature is the 
mean of the monthly maximum and minimum temperatures over the whole year

The mean over the whole year of the monthly diurnal temperature ranges. Each monthly 
diurnal range is the difference between that month's maximum and minimum 

    temperature.  
The mean diurnal range (parameter 2) divided by the annual temperature range (parameter 

7).
The temperature Coefficient of Variation (C of V) is the standard deviation of the monthly 

mean temperatures expressed as a percentage of the mean of those temperatures. For 
this calculation, the mean in degrees Kelvin is used. This avoids the possibility of 

    having to divide by zero, but it does mean that the values are usually quite small. 
The highest maximum temperature in all months of the year.

The lowest minimum temperature in all months of the year. 

The difference between the max temperature of warmest period and the min temperature 
of coldest period.  

The wettest quarter of the year is determined (to the nearest week), and the mean 
    temperature of this period is calculated. 
The driest quarter of the year is determined (to the nearest week), and the mean 
    temperature of this period is calculated.  
The warmest quarter of the year is determined (to the nearest week), and the mean 
    temperature of this period is calculated.
The coldest quarter of the year is determined (to the nearest week), and the mean 
    temperature of this period is calculated.  
The sum of all 12 monthly precipitation estimates.  
The precipitation of the wettest month 

The precipitation of the driest month 

The Coefficient of Variation (C of V) is the standard deviation of the weekly precipitation 
estimates expressed as a percentage of the mean of those estimates. 

The wettest quarter of the year is determined (to the nearest week), and the total 
    precipitation over this period is calculated.  
The driest quarter of the year is determined (to the nearest week), and the total 
    precipitation over this period is calculated. 
The warmest quarter of the year is determined (to the nearest week), and the total 
    precipitation over this period is calculated. 
The coldest quarter of the year is determined (to the nearest week), and the total 
    precipitation over this period is calculated.

Edaphic Factors
Geology

soil class

Geology

Soil type classification

Bureau of Agricultural Research/Bureau of Soils and Water Management-Department of 
Agriculture

Bureau of Soils and Water Management-Department of Agriculture
Vegetation-Related Factors

land 
cover
NDVI

Philippine land cover 
   classification (2010)
Normalized Difference  
Vegetation Index (-1 to 1)

National Mapping Resources Information Authority/Forest Management Bureau

Processed Landsat 5 image using ERDAS 9.2

Topographic Factors
aster_
elev

Elevation (m) Derived from Advanced Spaceborne Thermal Emission and Reflection Radiometer 
    (ASTER) Global Digital Elevation Model (GDEM)  30m of NASA

Modeling Future Spatial Distibution
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building. Analysis of variable relative contribution is one 
natural application of SDM. Using this analysis, variables
that matter most in SDM were determined. As the percent 
contribution increases, the influence of a particular variable 
also increases. Alternatively, Maxent used jackknife test 
as a measure of the relative importance of each variable 
within the model. This test calculated the model gain for 
each variable when used in isolation and the average gain 
for the remaining variables when a particular variable is 
omitted from the model to determine which variable are the 
most important individually to the Maxent models of the 
species (Phillips et al. 2006).

This study used logistic format of probability 
distribution where each pixel has a probability value 
ranging from 0 to 1 (Phillips et al. 2006). Pixels with high 
probability value are areas with better predicted conditions 
(Trisurat et al. 2011). Hence, as the value departs from 0 to 
1, it indicates an increasing level of suitability. The default 
probability of occurrence was classified into 10 classes 
of equal interval. Thus, value from 0 to 0.5 indicated 
unsuitable habitats where species will unlikely be found, 
while 0.5 to 1.0 represented suitable habitats where species 
will likely be present.

Evaluation and Assessment of Model Performance

The Area under the Receiver Operating Characteristics 
(ROC) curve was used to evaluate model performance 
as introduced by Swets (1988). The AUC is a threshold 
independent measure of a model’s ability to discriminate 
presence from absence (or background points). The AUC 
values vary from 0.5 to 1 where AUC value of 0.5 shows 
that model prediction were not better than random. The 
AUC values departing from 0 to 1 means increasing 
model accuracy. The average AUC of all 7 models were 
compared and ranked. The proposed classification of

software. During modeling,occurrence records were further 
subdivided into two parts: 75% were used to generate 
species distribution models while the remaining 25% were 
kept as independent data to test the accuracy of each model 
(Huberty 1994; Franklin 2009; Gracia et al. 2013). The 
software had an upper limit of 1000 for each run. Different 
sets of testing and training samples were randomly selected 
for each iteration. Maxent utilized background points in 
place of absence data. Samples were randomly selected 
from a set of 10,000 background points to represent pseudo-
absence points (Phillips et al. 2006; Barbet-Massin et al. 
2012).

A total of seven models for each dipterocarp species 
were created in this study: ‘Climatic-Only Model’, 
Climatic-Topographic Model’, ‘Climatic-Edaphic Model’, 
‘Climatic-Anthropogenic Model’, ‘Climatic-Vegetation 
Model’, ‘Full Model’ and ‘Final Model’. The ‘Climatic-
Only Model' considered only the climatic factors as 
variables while the ‘Full Model’ took into account all 30 
environmental variables. The ‘Final Model’ is the result 
from a series of variable reduction and selection stages, a 
methodology adopted from Garcia et al. (2013) and Kendal 
et al. (2013). Each model was replicated five times using the 
five synthetic climate scenarios developed by IRI (Base1-5 
and Projected1-5).

Reduction and selection of variables were done 
through pairwise correlation values to eliminate redundancy
with the independent variables (Rinnhofer et al. 2012). 
This was done using Principal Component Analysis tool in 
ArcGIS as demonstrated by Garcia et al. (2013). After this 
test, the variables were trimmed down to just 18 (Figure 3).

Maxent provides table of analysis of variable 
contributions that summarizes the percent predictive 
contribution of each environmental variable during model 

Table 1.  Summary of environmental variables used in the study. 
Variable Variable (Unit) Description/Source

Topographic Factors
aster_slope

aster_aspect

dist_rivers

Slope (%)

Aspect

Euclidean distance 
    (distance in meters)

Derived from Advanced Spaceborne Thermal Emission and Reflection Radiometer
    (ASTER) Global Digital Elevation Model (GDEM)  30m of NASA
Derived from Advanced Spaceborne Thermal Emission and Reflection Radiometer 
    (ASTER) Global Digital Elevation Model (GDEM)  30m of NASA
www.geofabrik.de

Anthropogenic Factors
Population

dist_roads

dist_settlements

Global Population 
    Distribution Database
Euclidean distance 
    (distance in meters)
Euclidean distance 
    (distance in meters)

LandScan Global Population Database

www.geofabrik.de

www.geofabrik.de

Journal of Environmental Science and Management Special Issue No. 1 2016



20 Modeling Future Spatial Distibution

Figure 3. The research flow diagram.

AUC by Swets (1988) was used to interpret the AUC 
(Table 2). Among the traditional approaches of SDM, 
Maxent calculates AUC values differently because it 
defines specificity using the predicted area and not true 
commission (Phillips et al. 2006).

Another evaluation method employed in this study is 
the True Skill Statistics (TSS). It is also known as Hanssen-
Kuipers Discriminant that compares the number of correct 
forecasts, minus those forecasts, minus those attributable 
to random guessing to that of a hypothetical set of perfect 
forecast (Allouche et al.  2006). TSS is a binomial test 
that is threshold dependent (Herkt 2007) and can be used 
to compare prediction performance independent of both 
validation dataset size and prevalence (Allouche et al. 
2006). The scale on how TSS statistics can be interpreted 
is shown in Table 3 (as cited by Garcia et al. 2013 from 
Monserud and Leemans 1992).

Species Distribution Change

Parmesan (2006) reported that species can shift their 
distributions, or migrate, to remain at equilibrium with
climate. The Maxent outputs were continuous probability of 
occurrence (0.0 – 1.0) where higher probability values mean 
better suitability and lower values mean poorer suitability. 
Predicted probability values were transformed to binary 
prediction. The predicted values equal to or greater than 0.5 
was assigned as ‘present’. On the other hand, values less than 
0.5 was for ‘absent’. The percentage change between the 
area of suitable and unsuitable habitats was also determined.

RESULTS AND DISCUSSION

Model Evaluation Using AUC values 

All AUC values were greater than 0.5. Based on the 
AUC classification by Swets (1988), it could be concluded 

Table 2. The AUC classification used in the interpretation 
of results. 

AUC Value Description
0.90 – 1.0
0.80 – 0.90
0.70 – 0.80
0.60 – 0.70

< 0.60

Excellent
Good
Fair
Poor
Fail

Table 3. TSS values and interpretation. 

TSS Value Degree of Agreement
0.00 – 0.05
0.05 – 0.19
0.20 – 0.39
0.40 – 0.54
0.55 – 0.69
0.70 – 0.84
0.85 – 0.99

1.00

None
Very Poor

Poor
Fair

Good
Very Good
Excellent
Perfect
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model had poor performance, three had fair performances 
and the remaining three had good performances (Figure 5).

In general, the Final Models consistently outperformed 
all other models for both S. palosapis and S. polysperma 
species. This suggests that a model with a diversified set 
of variables is more desirable than the more complicated 
ones (Nicopior 2014). However, differences in the AUC 
values were also observed as performances varied from 
fair to good (S. palosapis) and poor to fair to good (S. 
polysperma). These differences might be attributed to the 
generalization of variables for both dipterocarp species. 
It should be noted that not all forest tree species of the 
same family or even of the same genus live in the same 
environmental conditions. Fernando (2009) found out 
that dipterocarps could be found in at least four different 
forest formations, including tropical lowland evergreen 
rainforest, tropical lower montane rainforest, tropical 
semi-evergreen rainforest and forest over limestone. Other 
forest habitats such as the freshwater, peat swamp forest 
and forests over ultramafic rocks in the country may likely 
contain dipterocarp species if extensive surveys could be 
conducted. Thus, each species may have different sets of 
environmental requirements restricting their occurrence 
and distribution (Garcia et al. 2013).

Model Evaluation Using TSS values	

The True Skill Statistics (TSS) method (Allouche et 
al. 2006) is also called Hanssen-Kuipers Discriminant, it 
is a threshold dependent measure used for assessing model 

that all seven probability models for S. palosapis and S. 
polysperma species showed better performance than a null 
model. As seen in Figures 4 and 5, the models’ level of 
accuracy derived from test points (light bars) are relatively
lower compared to the training points (dark bars). This 
difference may have occurred because of fewer test points 
and their random distribution. However, AUC of test points 
was used in the analysis (Trisurat et al. 2009; Trisurat et al. 
2011; Garcia et al. 2013).

For S. palosapis, the Final Model had the best 
performance with an AUC value of 0.8763, while the Full 
Model ranked second with an AUC value of 0.8706. The 
Climatic-Only model performed quite well (AUC=0.8262). 
Among the Partial Models, the Climatic-Vegetation 
worked best (AUC=0.8542) while Climatic-Anthropogenic 
(AUC=0.7708) was the least performing one. Climatic-
Topographic and Climatic-Edaphic had AUC values of 
0.8381 and 0.8304, respectively. It should be noted however 
that the models had fair to good predictive performance, 
with AUC values ranging from 0.7708 to 0.8763 (Figure 
4). Similar to S. palosapis, the Final Model showed the 
best performance (AUC=0.8626) for S. polysperma. The 
Climatic-Only model performed fairly (AUC=0.7080) 
while the Partial Models are in the following order based 
on decreasing AUC values: Climatic-Vegetation>Climatic-
Edaphic>Climatic-Topographic>Climatic-Anthropogenic. 
The Climatic-Anthropogenic model showed poor 
performance with AUC equivalent to 0.6741 but it is still 
better than a null model. The Full Model had AUC of 0.8273 
which ranked third overall. Among the seven models, one 
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Figure 4. AUC values of seven probability models for Shorea palosapis (Blanco) Merr.
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certain extent. For instance, the Final Model with only 18 
variables performed better than the Full Model with all 30 
original variables. Again, this suggests that a model with a 
diversified set of variables is more desirable than the more 
complicated ones (Nicopior 2014). Homer and Lemeshow 
(2000) suggested that patterns or relationships between 
variables may be more stable when fewer variables 
are involved, thus it is easier to make generalizations.

Determinant Variables in the Pre-Final Modeling

The Final model was used in determining the 
variables’importance since it showed the best performance 
among the seven probability models. Out of the 30 original 
variables, only 18 environmental variables were used in 
the Final Modeling and these are: climatic (Bio2, Bio3, 
Bio4, Bio6, Bio7, Bio14, Bio17); edaphic (geology, 

Figure 5. AUC values of seven probability models for Shorea polysperma (Blanco) Merr.

performance. Average TSS values were computed with five 
replicates for the seven probability models and were then 
ranked (Table 4). Based on the TSS values, the Final Model 
for S. polysperma (TSS=0.8332) performed very well. 
TheS. palosapis Final Model was found to perform as well 
as the Climatic-Anthropogenic model for the same species 
(TSS=0.8176). However, the Climatic-Anthropogenic 
model for S. polysperma showed poor performance 
(TSS=0.2977). The Climatic-Only model was second least 
performing but its performances are still considered fair 
for S. polysperma (TSS=0.4718) and good for S. palosapis 
(TSS=0.5460). The predictive performances of the models 
improved when the climatic variables were combined with 
other environmental variable groups, except in the Climatic-
Edaphic model of S. palosapis (TSS=0.4310) and Climatic-
Anthropogenic model of S. polysperma (TSS=0.2977). 
This difference suggests that a model with a diversified set 
of variables as shown by the Final model is more desirable 
than the more complicated ones (Nicopior 2014).

To compare the results of the two evaluation methods, 
the AUC and TSS values of all models for both species 
are presented in Table 5. The rankings of all seven models 
based on TSS values were not the same as with the AUC-
based index. However, the values for the Final Models 
always ranked on top for both species. This suggests that 
the relative predictive performance of a model improves 
as the number of variables increase, but only up to a

Modeling Future Spatial Distibution

Table 4. TSS values for all seven models for S. palosapis 
and S. polysperma. 

Models S. palosapis 
(Rank)

S. polysperma 
(Rank)

Climatic-Only
Climatic-Topographic
Climatic-Edaphic
Climatic-Vegetation
Climatic-Anthropogenic
Full Model
Final Model

0.5460 (5)
0.5944 (3)
0.4310 (6)
0.5877 (4)
0.8176 (1)
0.6751 (2)
0.8176 (1)

0.4718 (6)
0.7099 (2)
0.6522 (4)
0.6819 (3)
0.2977 (7)
0.5058 (5)
0.8332 (1)
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0.70) was retained and included in the Final Model. Each 
set of highly correlated variables were further analyzed, 
and from each set, one variable set was selected to be 
included in the Final Model. The selections were based on 
the average relative importance of the variable in predicting
species probability of occurrence using the Climatic-Only, 
Partial and Full Models. For instance, in Group II, which 
includes the precipitation of driest quarter (Bio17) and 
precipitation of coldest quarter (Bio19), the precipitation of 
driest quarter (Bio17) was retained because it ranked second 
overall (with an average contribution of 16.5871%) while 
the precipitation of coldest quarter (Bio19) ranked only 
eighteenth (1.6842%). In Group VII, 12 climatic variables 
(six variables each under temperature and precipitation) 
were clustered together. Among the 12 climatic variables, the 
precipitation of driest month (Bio14) was retained because 
it ranked fourteenth overall (8.1222%). The precipitation 
of driest month (Bio14) is followed by the precipitation 
of wettest month (Bio13) (1.8269%) and maximum 
temperature of warmest month (Bio5) (1.2051%), while the 
other nine climatic variables showed very little contribution 
to the models (average contribution ranges from 0.0350% 
to 0.8651%). 

After the selection, the number of environmental 
variables went down from 30 to 18. Nevertheless, all five 
variable groups were still represented. All variables from 
four of the five classifications were retained, except for 
climatic variables which were reduced from 19 to seven. 
This explains that species probability of occurrence cannot 
be explained by one variable group alone but the interplay 
of forces of all variable groups. It is also worthy to note 
to carry out a series of variable reduction and selection 
methods prior to species distribution modeling primarily 
to reduce errors in the model especially those caused by 
spatial autocorrelation of the presence data or the multi-
collinearity of environmental variables used.

Determinant Variables in the Final Modeling

In order to meet the third objective, Final Modeling 
was implemented using only the variables that passed the

soil type); vegetation-related (Land cover, NDVI; 
topographic (ASTER_Elevation, ASTER_Slope, ASTER_
Aspect, distance to rivers); and anthropogenic (human 
population, distance to roads, distance to settlements).

Multi-collinearity Test. All the variables were tested for 
multi-collinearity by examining the cross-correlations 
(Pearson correlation coefficient, r) among the variables. 
This was done to avoid misinterpretations of model’s results 
arising from either positive or negative collinearity and to 
facilitate interpretation. Only one variable (r > 0.70) from 
a set of highly cross-correlated variables was included in 
the Final Model. Seventeen climatic variables were highly 
correlated to at least two variables. Of the 17 variables, 
12 variables had the highest counts of highly correlated 
variables (Counts = 16). The minimum temperature of 
coldest month (Bio6) was correlated to 15 other variables 
while four other variables, annual temperature range (Bio7), 
precipitation of driest quarter (Bio17), precipitation of 
coldest quarter (Bio19) and elevation, were correlated with 
13 other variables. Of the 13 correlated variables, elevation 
had negative linear correlations with eight climatic 
variables and positive linear correlations with five climatic 
variables. Seven temperature variables (r value ranges 
from -0.8420 to -0.8476) and one precipitation variable, 
precipitation seasonality (Bio15) (r = -0.7748) had negative 
linear correlations with elevation, which affirmed the fact 
that temperatures are higher in lower elevations (Shepson 
2003). In contrast, elevation had positive linear correlations 
with five other precipitation variables (r value ranges from 
0.7501 to 0.8256). Thus this again affirmed the fact that the 
chance of rainfall is higher in higher elevations. According 
to PAGASA, the amount of rainfall that we can experience 
depends on the geographical location. In the Philippines, 
the east coast can see over 5,000 mm especially in the 
mountainous region like the NSMNP. The remaining 13 
environmental variables that had no correlation with the 
other variables were used in the Final Model.

Variable Reduction and Selection. The highly correlated 
variables were classified into eighteen groups. Only one 
variable from each set of highly correlated variables (r > 
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Table 5. Comparisons of AUC and TSS values for all seven models of S. palosapis and S. polysperma. 

Models
S. palosapis S. polysperma

AUC (Rank) TSS (Rank) AUC (Rank) TSS (Rank)
Climatic-Only
Climatic-Topographic
Climatic-Edaphic
Climatic-Vegetation
Climatic-Anthropogenic
Full Model
Final Model

0.832 (6)
0.8381 (4)
0.830 (5)
0.854 (3)
0.771 (7)
0.871 (2)
0.876 (1)

0.546 (5)
0.5944 (3)
0.4310 (6)
0.5877 (4)
0.8176 (1)
0.6751 (2)
0.8176 (1)

0.7080 (6)
0.7755 (5)
0.7833 (4)
0.8425 (2)
0.6741 (7)
0.8273 (3)
0.8626 (1)

0.4718 (6)
0.7099 (2)
0.6522 (4)
0.6819 (3)
0.2977 (7)
0.5058 (5)
0.8332 (1)
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Pre-Final modeling stages. The Final Model was fitted 
using 18 environmental variables. It was run with five 
replicates (representing the five synthetic climate scenarios) 
and was then averaged. Each model replicate was set for 
1,000 iterations to allow enough time for the model to 
converge, though the number of iterations was not usually 
maximized because iterations automatically stop when the 
convergence threshold has already been satisfied. In the 
Final Modeling, replicates had iterations ranging from 440 
to 700 for S. palosapis, and 500 to 840 for S. polysperma.

Analysis of Variable Importance

Among the seven climatic variables used in predicting 
the species distribution, precipitation of driest quarter 
(Bio17) had the highest contribution (10.76%), followed 
by isothermality (Bio3) with 10.19% (Figure 6). This 
means that these two climatic variables explained the 
occurrence of the two dipterocarp tree species. However, 
the sole occurrence of S. palosapis is determined by the 
annual temperature range (Bio17) with an average percent 
contribution of 11.62%. Temperature seasonality (Bio4) 
had the least average percent contribution to the Maxent 
models of the two dipterocarp tree species with only 
0.60%. According to Symington (1943) and Wyatt-Smith 
(1963) as cited by Appanah et al. 1998, the distributions 
of dipterocarps in Asia particularly in the southeast asia 
are being controlled by climatic conditions at different 
elevation gradient. Furthermore, the conjunction of altitude 
and other natural barriers obstructed its distribution. The 
dipterocarps occupy several phytogeographical regions 
that mainly conform to climatic and ecological factors.

As to the topographic variables used in predicting 
distributions of S. palosapis and S. polysperma, slope had the 
highest contribution (11.58%) followed by distance to rivers 
with an average contribution of 7.28%. Elevation had the 
least average contribution (2.52%) to the Maxent models of

S. palosapis species while for S. polysperma, aspect (0.74%) 
had the least influence. As to the anthropogenic variables 
used in predicting distribution of the two species, distance 
to roads had the highest contribution (27.15%). Distance to 
settlement and human population had lesser average percent 
contribution to the Maxent models of the dipterocarp tree 
species with 3.27% and 2.83%, respectively (Figure 7). 
Trisurat et al. (2009) also found that anthropogenic factors 
such as distance to road and village are also important and 
negatively correlated to the distribution of tree species in 
Northern Thailand. In his study, importance of distance 
to road and village reached up to 21.6% and 17.1%, 
respectively. Another study conducted by Snelder et al. 
(2013) projected the impacts of land use change, including 
the planned construction of a main road crossing the 
NSMNP, on forest bird distribution. The researchers found 
that land use change, especially the creation of access 
points for logging and land transitions, will be a major 
influence on species distributions. Population also showed 
low contribution with 5.10%, on the average. For edaphic 
variables, geology (4.02%) had greater impact than soil type 
(2.59%) on predicting the occurrence of two dipterocarp 
tree species. For the vegetation-related variables, land cover 
(6.7217%) had a greater impact than NDVI (1.4082%) on 
predicting the occurrence of two dipterocarp tree species.

Overall, predicting the occurrence of the two tree 
species was largely determined by climatic variables 
(34.35%) followed by anthropogenic variables (27.25%) 
and topographic variables (24.15%). Vegetation-related 
and edaphic variables had relatively lesser contribution 
with 7.58% and 6.67%, respectively (Figure 8). Similar 
trend was observed by Garcia et al (2013) wherein climatic 
variables contributed less than the biophysical variables 
(e.g topographic, edaphic, anthropogenic, vegetation). 
However, it does not necessarily mean that biophysical 
variables are more important than climatic variables as the 
biophysical and bioclimatic variables are inherently spatially 
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Figure 6. Percent contribution of climatic variables to the 
distribution of two Dipterocarps.

Figure 7. Percent contribution of four variable groups to the 
distribution of two Dipterocarps.
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better predicted conditions (Trisurat et al. 2011). Hence, 
as the value departs from 0 to 1 indicates increasing level 
of suitability. The default probability of occurrence was 
classified into 10 classes of equal interval. Thus, value 
from0 to 0.5 indicated unsuitable habitats where species 
will likely not to be found, while 0.5 to 1.0 represented 
suitable habitats where species will likely to be present. 

Areas which have darker blue color indicate the high 
probability of occurrence of S. palosapis (Figure 9).  As 
the color fades probability of occurrence decreases. About 
11,543.21 ha are suitable to S. palosapis.  It is worthy to note 
however that the whole 11,543.21 ha has varying degree of 
suitability to S. palosapis. Distribution of the area based 
on suitability is as follows: fairly suitable (5,689.15 ha), 
moderately suitable (2,720.90 ha), suitable (1,813.93 ha), 
very suitable (906.97 ha) and extremely suitable (412.26 
ha). Under future climate, S. palosapis will gain more 
suitable ecological niche. Suitable areas will increase from 
11,543.21 ha under baseline climate scenario to 14,264.11 
ha under future climate scenario representing about 24% 
increase.

The map using baseline climate scenario (A) predicted 
high probability of occurrence in western and eastern 
sections of Ilagan, northeastern part of Palanan close to the 
eastern seaboard and some part in Divilacan (Figure 10). 
Total suitable area under baseline climate scenario for S. 
polysperma is around 13,522.04 ha. Under future climate, 
the extent of unsuitable habitat areas decreased by 5.14% 
while the extent of suitable habitat areas increased by 100%. 
This suggests that S. polysperma will benefit from future 
climate since the prediction revealed an increase in suitable 
area from 13,522.04 ha to 27,044.09 ha. The map using 
baseline climate scenario (A) shows a high probability of 
occurrence in the western and eastern sections of Ilagan, 
northeastern part of Palanan close to the eastern seaboard 
and in some parts of Divilacan.

In the study of Trisurat et al. (2009), the total extent of 
occurrences under current conditions and under predicted 
climate condition in 2050 are not substantially different 
from most plant species. An increase in total suitable areas 
was observed for the twelve plant species. For instance, 
forecasted climate leads to an increase from 19% to 29% 
in the suitable location of Hopea odorata in 2050. Other 
plant species that gained at least 10% in suitable areas 
are: Dalbergia conchinchinnensis, Pinus kesiya, Pinus 
merkusii, Wrightia tomentosa, Dipterocarpus alatus and 
Mangifera spp. Another study of Trisurat et al. (2011) 
found out that 35 out of 66 tree species will gain more 
niches under the predicted climate conditions. Garcia et al. 
(2013) also found that seven species: Afzelia rhomboidea, 

and temporally autocorrelated (Schrag et al. 2007). It is 
instead more likely that groups of biophysical variables are 
acting together to influence the occurrence of the species.

Jackknife Test of Variable Importance

The Jackknife test calculates the “model gain” when 
one variable is used in isolation and the “average gain” for 
the model which used all variables except one (Garcia et al. 
2013; Phillips et al. 2006). Variable with highest gain when 
used in isolation is precipitation of driest quarter (Bio17).  
Regularized training gain for this variable is 0.5683, which 
therefore appears to have the most useful information by 
itself. It is then followed by annual temperature range (Bio7) 
with training gain of 0.5519. The variable that decreases the 
gain the most when it is omitted is distance to rivers with a 
regularized training gain equal to 1.3266, which therefore 
appears to have the most information that is not present in 
the other variables. On the other hand, for S. polysperma, 
results of the jackknife test showed that precipitation of 
driest quarter (Bio17) is the most important variable since 
it gives the highest gain (0.4391) when used singly. This 
implies that precipitation of driest quarter (Bio17) has 
the most the most useful information by itself, followed 
by annual temperature annual (Bio7) with 0.4192. The 
variable that decreases the gain the most when it is omitted 
is distance to roads with a regularized training gain equal 
to 1.1590, which means that it has the most information not 
present in the other variables.

Potential Species Distributions

Maxent outputs in logistic format of species probability 
distribution were generated in this study wherein each pixel 
has a probability value ranging from 0 to 1 (Phillips et al. 
2006). This is useful for displaying information whether 
the species is either suitable or unsuitable in a particular 
area. Pixels with high probability value are areas with 

Figure 8. Analysis of relative contribution (%), Variables in 
Group.
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Koordersiodendron pinnatum, Mangifera altissima, Shorea 
contorta, Shorea palosapis, Shorea polysperma and Vitex 
parviflora, will likely benefit from future climate change.

CONCLUSIONS AND RECOMMENDATIONS

Each species responds differently to a changing 
environment. Thus, species composition, communities and 
even ecosystems vary in different ways from one place to 
another, in response to climate change (IPCC 2014). The 
impacts of projected climate changes on the vegetation of 
the lowland tropics are currently poorly understood. Hence, 
this study evaluated the consequence of climate change 
on the geographical distribution of S. palosapis and S. 
polysperma in the NSMNP. The study also explored which 
species distribution model performed best by evaluating 
and comparing the relative predictive performance of seven 
probability models for each species. The environmental 
variables with the highest contribution in the geographic 
distribution of S. palosapis and S. polysperma were 
determined based on the selected best performing model. 

The assessment of model predictive accuracy is one 
fundamental issue in the development of SDMs (Guisan and 
Thuiller 2005; Barry and Elith 2006). Thus, this study used 
to two statistics measures to assess the model performance: 
(1) the Area under Receiver Operating Characteristics 
(ROC) Curve Analysis (AUC) and (2) True Skill Statistics 
(TSS). Using the proposed AUC classification by Swets 
(1988), all seven probability models for both S. palosapis 
and S. polysperma showed performance that are better than 
random mode as indicated by the AUC values greater than 
0.5. The Final model performed best both for S. palosapis 
(AUC = 0.8763; TSS = 0.8176) and S. polysperma (AUC 
= 0.8626; TSS = 0.8332). The ranking of all seven models 
based on TSS values are not exactly the same as the AUC-
based index except for the Final model that always ranked 
on top for both species and Climatic-only model that 
always placed sixth. This suggests that the model’s relative 
predictive performance improves as the number of variables 
increase but only up to a certain extent. For instance, the 
Full model with all 30 original variables performed worse 
compared to the Final model with only 18 variables. This

Modeling Future Spatial Distibution

Figure 9. Predicted suitable and unsuitable habitats of S. palosapis using (A) baseline climate scenario; (B) projected 
climate scenario. Blue colors show area with better predicted conditions. Black dots show species occurrence.
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areas. This set of environmental variables for plants may 
directly or indirectly affect its patterns of abundance and 
distribution in NSMNP. Thus, the study emphasized the 
interplay of forces between environmental variables that 
affect the overall suitability of species in a particular region. 
The model affirms the relationship between species known 
range and environmental factors and uses this relationship 
to identify species distribution.

In terms of potential distribution, results also showed 
that the probability of occurrence of the species studied 
changed under the projected climate scenario. Since 
this study was focused on the potential effects of present 
and future climates on natural system by evaluating the 
behavior of S. palosapis and S. polysperma in terms of their 
geographical distribution under different climate scenarios, 
all variables were treated as constant except climatic 
variables. The comparison of Maxent logistic predictions 
for present and future distributions showed that both species 
were found to benefit from future climate with increasing 
suitable habitat range. Moreover, it is important to note that 

explained that a series of variable reduction methods (e.g 
Multi-collinearity and Jackknife tests) led to the best 
performing model that has few variables. Homer and 
Lemeshow (2000) suggested that patterns or relationships 
between variable may be more stable when fewer variables 
are involved, thus, easier to make generalizations. 

In general, analysis of variable importance using the 
Final model revealed that predicting the occurrence of the 
two tree species was largely determined by climatic variables 
(34.35%) followed by anthropogenic variables (27.25%) 
and topographic variables (24.15%) Vegetation-related and 
edaphic variables had relatively lesser contribution with 
7.58% and 6.67%, respectively. On the average, the top 
five predictors with the highest contribution are: distance 
to roads, slope, precipitation of driest quarter, isothermality 
and distance to rivers. However, it is important to reiterate 
that forest tree species distribution or “species habitat 
requirement” is defined by the environmental variables 
where they occur and optimal combination of these factors 
allows a particular forest tree species to persist in certain

Figure 10. Predicted suitable and unsuitable habitats of S. polysperma using (A) baseline climate scenario; (B) projected 
climate scenario. Blue colors show area with better predicted conditions. Black dots show species occurrence.



28
the distributions of dipterocarps in Asia particularly in the 
southeast asia are being controlled by climatic conditions at 
different elevation gradient. Furthermore, the conjunction of
altitude and other natural barriers obstructed its distribution. 
The dipterocarps occupy several phytogeographical regions 
that mainly conform to climatic and ecological factors.

Species probability distribution maps will provide 
conservation practitioners with estimates of the spatial 
distributions of species requiring more attention. 
Furthermore, this will greatly contribute to decision-makers 
especially in mainstreaming climate change in the NSMNP 
management plan to better conserve potential suitable 
habitats of priority species. The identification of potential 
suitable habitat is also beneficial in strategic planning, 
particularly in the light of inadequate funds and resources. 
Predictive distribution maps are also prerequisite to many 
aspects of resource management, conservation planning 
such as biodiversity assessment, reserve design, population, 
community and ecosystem modeling, invasive species, risk 
assessment, and predicting the effect of climate change on 
species and ecosystem, which was the focused of this study. 
The potentials of species distribution modeling (SDM) 
have already been set and a lot of research gaps on the 
aforementioned fields are already identified as well. With 
those in mind, hopefully, conservation practitioners and other 
stakeholders must be capacitated on the use of SDM tools 
especially the user-friendly, free and open source application 
like Maxent modeling software (Phillips et al. 2006).
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