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Roots Partially in Contact with Soil: 
Analytical Solutions and Approximation 
in Models of Nutrient and Water Uptake
Peter de Willigen, Marius Heinen,* and Meine van Noordwijk
Root–soil contact entails a trade-off between uptake opportunities and 
aeration requirements. A single root in the center of a cylinder of soil has 
been the standard geometry for which most root-level water and nutrient 
uptake models have been derived. However, this implies assumptions about 
complete root–soil contact and regularly spaced, parallel roots that do not 
conform to the situation in the field. In reality, the frequency distribution of 
transport distances will differ from what the cylinder model assumes, both 
by partial root–soil contact and irregular three-dimensional (3-D) distribu-
tion. We derived analytical equations describing the transport of water and 
nutrients to and uptake by roots in partial contact with soil for two extremes: 
(i) part of each root in contact or (ii) part of all roots in full contact and the 
rest without. Solutions range from negligible impacts to proportionality of 
uptake to the part of roots in contact with soil.

Abbreviations: 3-D, three-dimensional; lr, partial longitudinal root–soil contact; pde, par-
tial differential equation; pr, partial radial root–soil contact.

Single-root models consider the soil in a cylindrical perspective with roots at the 
center and assume local homogeneity of the soil matrix. Empirical diffusion coefficients 
correct for the changes in path length when soils dry out and less pore space is effectively 
involved (Nye and Tinker, 1977). A complementary view starts at a random position in 
3-D belowground space and assumes that transport of water or nutrients will be directed 
toward the root that generates the strongest concentration gradients, most likely the nearest 
active root. Common procedures for delineating these in two-dimensional cross-sections of 
soil are based on a nearest-neighbor Dirichlet tessellation (de Willigen and van Noordwijk, 
1987b) and implicitly assume full root–soil contact and roots growing perpendicular to the 
plane of observation. Root distribution and root–soil contact in the field, however, depend 
on the way roots interact with soil aggregates and pores (Altemüller and Haag, 1983; van 
Noordwijk et al., 1993a; Kooistra and van Noordwijk, 1996). Contact between roots and 
soil is one of the critical issues for progress in soil science as identified by Bouma (2010). 
While models aimed at quantifying soil–plant relations at the field scale will necessarily 
have to make simplifying assumptions at the single-root level, the level of bias introduced 
into standard single-root models by oversimplifying the geometry of the root–soil inter-
face remains a concern. How serious the bias is may depend primarily on the level of 
compensation that can exist within a root system where individual roots face a range of cir-
cumstances. This study dealt with more realistic, complex root–soil geometries and derived 
ways in which the simple cylindrical model can still be used with appropriate adjustments.

Most models describe water uptake by plants as demand driven, where the demand is 
driven by atmospheric conditions. In contrast, models for nutrient uptake have a long 
history of describing supply-driven, concentration-dependent uptake rates, only indirectly 
accounting for the feedback in the plant that downregulates uptake to meet demand. This 
difference may be due to the fact that it is easier to measure total uptake of water rather 
than nutrients on a daily basis. Where the Baldwin et al. (1973), Nye and Tinker (1977), 
and Claassen and Barber (1974) models of nutrient uptake started with concentration-
dependent uptake and steady-state solutions for transport in the soil, de Willigen and van 
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Noordwijk (1987a, 1994a, 1994b) presented analytical solutions 
for the steady-rate situation that can emerge where demand-driven 
uptake per unit root is constant in time. Given a constant uptake 
requirement, the demand per unit root length is inversely propor-
tional to root-length density, and the root-length density required 
to match supply and demand depends on the demand as well as 
the nutrient pool in the soil (Fig. 1). Point Y compared with X in 
this figure indicates the increase in root-length density in a given 
soil needed to compensate for a 50% decrease in soil supply, while 
Z compared with X indicates that a similar increase in root-length 
density is needed to meet a doubled demand on the same soil.

Roots need sufficient direct contact with air-filled macropores to 
meet their aeration requirements (Bartholomeus et al., 2008), as 
modeled for radial transport by de Willigen and van Noordwijk 
(1984) and van Noordwijk and de Willigen (1984) and for longitu-
dinal transport by de Willigen and van Noordwijk (1989). On the 
other hand, roots need to be in contact with the water-filled micro- 
and mesopores of the soil to take up water and nutrients, with 
direct contact with the solid phase accounting for only a small part 
of the total nutrient uptake (Jenny and Grossenbacher, 1963). The 
required compromise of intermediate values of root–soil contact 
can explain the concept of optimal soil compaction: in a soil that 
is too loosely packed, root–soil contact and unsaturated hydraulic 
conductivity are low, whereas in a very dense soil, penetration resis-
tance and root aeration are limiting root growth and functioning 
(Kooistra et al., 1992; Veen et al., 1992). Moderate soil compaction 
offers some benefits to growing roots by increasing root–soil con-
tact, facilitating uptake (Tracy et al., 2011). Eight out of 17 woody 
species from Mediterranean ecosystems tested had higher total bio-
mass with moderate degrees of soil compaction, possibly a result of 
increased root–soil contact (Alameda and Villar, 2009). Optimal 
soil structure in the field differs among crops (Arvidsson and 
Håkansson, 2014) in ways that reflect this compromise and dif-
ferential abilities of crops to develop internal longitudinal aeration 

inside roots once the root tip has penetrated (van Noordwijk and 
Brouwer, 1993). Root tips rotating when they reach voids, as stud-
ied by Darwin (1888), can find aggregate surfaces, and root hairs 
help them to attach to such, leading to a complex 3-D partial root 
contact situation in the field (van Noordwijk et al., 1993a; Fig. 2).

The various complexities of actual root–soil geometry, including 
details of root–soil contact, can be approached by developing trans-
port models for specified geometries or by a generic method that 
seeks approximate solutions based on transport-distance equivalent 
representations (de Willigen and van Noordwijk, 1987a, 1987b; 
Rappoldt, 1992; van Noordwijk, 1992; van Noordwijk et al., 1993b). 
However, while 3-D root representations can be reduced to a fre-
quency distribution of two-dimensional (cylindrical) models once 
characterized by the transport distances involved, current methods 
for doing so (Fig. 2E and 2F) critically depend on an assumption of 
complete contact at the root–soil interface. Dunbabin et al. (2013) 
compared features of six current 3-D models and the progress they 
allow in relating soil and root hydraulic properties to wetting and 
drying phases of a soil profile but found that none of them deals 
with the dynamics of root–soil contact. De Willigen et al. (2012) 
compared four root water uptake routines of different complexity 
(one-, two-, and three-dimensional) that are all embedded in soil–
water balance models. The models differed in the way they handle 
compensation in wetter layers for reduced uptake opportunities in 
drier ones, with consequences for hydraulic redistribution in the soil. 
Both soil physical and root physiological factors were found to be 
important for proper deterministic modeling of root water uptake, 
but uncertainly remains on how variable root–soil contact can best 
be included in one-, two-, or three-dimensional models.

The two-dimensional sampling of root–soil contact on thin sec-
tions of soil allows the root contact percentage to be quantified as 
well as the angle with which roots intersect the plane of observa-
tion (van Noordwijk et al., 1992); this observation method can test 
the homogeneity in the root distribution as well as qualitatively 
infer the fraction of roots that grow in cracks, biogenic macropores, 
or those that penetrate into aggregates with full soil contact for as 
long as they stay inside such aggregate. Thin-section observations 
can complement what can be directly observed and mapped on 
profile walls (Han et al., 2015; van Noordwijk et al., 2000). In situ 
endoscopy visualizes the response of crop roots to biopores (Kautz 
and Köpke, 2010; Athmann et al., 2013). The average widths 
measured with a digital camera for the root–soil air gap for black 
locust (Robinia pseudoacacia L.) in open fields and in a root growth 
chamber were 0.24 and 0.39 mm, respectively (Liu et al., 2015). 
Root–soil contact can now be measured using X-ray microtomog-
raphy with accuracy on the contact area within 2.5% (Schmidt et 
al., 2012). Soil close to roots, the rhizosphere, not only has chemi-
cal and biological properties that are significantly different from 
those of soil located some distance away but may also differ in 
a physical sense, as root penetration implies local compaction by 
changes in particle and aggregate packing (Young, 1998; Schmidt 

Fig. 1. Schematic relationship between potential uptake (supply) and 
demand per unit root length as a function of root-length density (log-
arithmic scales). Point Y compared with X in this figure indicates the 
increase in root-length density in a given soil needed to compensate 
for a 50% decrease in soil supply, while Z compared with X indicates 
that a similar increase in root-length density is needed to meet a dou-
bled demand on the same soil.



VZJ | Advancing Critical Zone Science� p. 3 of 16

et al., 2012). In a study of wheat (Triticum aestivum L.) roots in 
southern Australia, White and Kirkegaard (2010) found that 30 
to 40% of topsoil roots were clumped within pores and cracks, 
increasing to 85 to 100% in the subsoil (>0.6 m). Wheat roots 
clumped into pores contacted the surrounding soil via numerous 
root hairs, whereas roots in cracks were appressed to the soil sur-
face and had very few root hairs. Approximately 85% of all roots 
observed in biopores in the field by Athmann et al. (2013) estab-
lished contact with the pore wall. The direct physical role of root 
hairs in anchoring root tips during soil penetration was studied 
by Bengough et al. (2016) by use of hairless maize (Zea mays L.) 
mutants compared with wild-type plants. Hairless seedlings took 
33 h to anchor themselves compared with 16 h for wild-type roots 
in 1.2 g cm−3 soil, but there was no significant advantage of root 
hairs in the densest soil (1.5 g cm−3). In a comparison of barley 
(Hordeum vulgare L.) genotypes with and without root hairs, a 
role for root hairs in P uptake in low-strength soil was found but 
not in high-strength soil, probably the result of support for root 
penetration and improved root–soil contact (Haling et al., 2013).

Partial root–soil contact may be needed under wet soil conditions 
to aerate plant roots, but root–soil contact decreases and air-
filled gaps emerge in dry soil when roots shrink (Liu et al., 2015; 
Carminati et al., 2013). In a study with lupin (Lupinus albus L.), 
part of the roots maintained contact with the soil via hydrated 
mucilage, while others (transport roots) had air-filled gaps and a 
hydrophobic rhizosphere, which isolate roots from the soil and may 
limit (hydraulic equilibration) water loss to dry soil (Carminati 
and Vetterlein, 2013). Hydraulic equilibration occurs especially 
at night when concurrent aboveground water demand for tran-
spiration is low; estimates of the amount of water involved range 

from a few percentage points to a substantial part of the daily 
demand (Bayala et al., 2008; Neumann and Cardon, 2012) while 
also prolonging the life span of fine roots, rewetting the rhizo-
sphere with consequences for nutrient mobility, and maintaining 
root–soil contact in dry soils. The dynamics of root–soil contact 
in drying soil have received specific attention since Herkelrath et 
al. (1977) suggested that shrinkage of roots and air-filled gaps can 
cause a major resistance in the soil–plant–atmosphere continuum. 
Faiz and Weatherley (1978) confirmed that shaking pots with 
sunflower (Helianthus annuus L.) plants in early stages of water 
stress could increase water uptake, presumably by reestablishing 
root–soil contact. Current understanding is that such gaps indeed 
are observable in the field (Liu et al., 2015) but that their role as 
a primary hindrance to uptake remains contested (Carminati et 
al., 2013). The presence of root hairs is a major plant adaptation 
to keep such a situation from developing (North and Nobel, 1997; 
Haling et al., 2013; Bengough et al., 2016). Hydraulic redistribu-
tion of water through roots can, however, maintain roots turgid 
and in contact with drying soil as long as water is accessible else-
where in the root system (Bayala et al., 2008).

In this study, we addressed two questions for two extremes for 
partial root–soil contact:

1.	 Can the analytical steady-rate solutions for nutrient and water 
uptake be adjusted, given cylinder geometry, to partial root–
soil contact effects in either radial (part of each root in contact; 
Fig. 2C) or longitudinal (part of all roots is in full contact, the 
rest without; Fig. 2D) representations?

2.	 Is there a simple expression for the additional root-length 
density needed in a layer of soil to account for the more complex 

Fig. 2. Aspects of the soil–root geometry in the field that deviate from (A) the regular cylinder model, (B) with root–soil contact varying from 0 to 
100% in thin-section samples, and partial root–soil contact that can be interpreted in (C) radial and (D) longitudinal directions; (E) characterizing the 
cumulative frequency distribution of soil to the nearest root distance can be used to (F) derive equivalent sets of cylinder models.
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root–soil geometry through use of the standard model but with 
adjusted effective root-length density?

66Model
Basic Situation
The starting point for our discussions on nutrient uptake (de 
Willigen and van Noordwijk, 1987a) is the uptake as generated by 
plant demand, that is, the rate of dry-matter production times the 
required nutrient content. Uptake by the roots is assumed to be in 
accordance with plant demand as long as transport in the soil can 
maintain the concentration at the root surface above a certain lim-
iting concentration. This limiting concentration is virtually zero 
for most conditions found in agricultural practice (de Willigen and 
van Noordwijk, 1987a, Table 3.2 and Section 3.4) Physiological 
experiments suggest that the limiting concentrations are on the 
order of 100, 10, and 1 mmol L−1 for N, K, and P, respectively, 
with equivalent amounts of available nutrients on the order of 3.5, 
10.5, and 7.8 to 78 kg ha−1. For N and K, this is <5% of what a soil 
needs to contain for good crop growth; for P on soils with high 
adsorption constants, it may represent a non-negligible amount.

Nutrient demand of agricultural crops during a major part of the 
growing season can be taken to be constant (van Noordwijk et al., 
1990). For the conditions chosen here, this also means a constant 
uptake rate per root, each root being confined to an equal volume 
of soil. The uptake potential of such a root can be characterized by 
a characteristic time: the period during which the concentration at 
the root surface exceeds the limiting (in practice zero) concentra-
tion or, to put it differently, the period during which uptake is in 
accordance with plant demand. This characteristic time is called 
the period of unconstrained uptake and is indicated here as Tu (d) 
or tu (dimensionless units).

The steady-rate solutions shown below are valid for linear and 
nonlinear (e.g., Langmuir type) adsorption and for water uptake 
provided the limiting value of concentration is reached when the 
steady-rate phase applies. In the case of water, instead of concentra-
tion the matric flux potential is substituted.

Some doubts could be raised as to the validity of the approach for the 
scale considered here—a root radius of 0.025 cm and transport dis-
tances of 0.25 to 0.5 cm. As stated by Metselaar and van Lier (2011), 
the Darcy length LD is on the order of 0.02 to 0.3 cm. Therefore, 
0.02 cm is the minimum transport length required to apply the 
Darcy equation. The transport distances mentioned above are larger. 
Because of partial contact, however, there is heterogeneity in the 
flow field. If we apply the aforementioned criterion to the length of 
the root circumference partaking in uptake, the condition is then 
a2pR0 > LD, where a is the degree of contact and R0 is the radius 
of the root. With the root radius applied here, this means that a is 
>0.13, and this is about the minimum value we used.

Partial Differential Equations 
and Boundary Conditions
Solute
The partial differential equation (pde) describing transport of 
solute has the general form as follows:

B VC D C
T

¶
=-Ñ× +Ñ× Ñ

¶

  


 	 [1]

where B is the bulk density of the solute (mg cm−3), T is time (d), C 
is the concentration in the soil solution (mg mL−1), V s the volume 
flux of the soil solution (cm d−1), and D is the diffusion coefficient 
(cm2 d−1). It is to be understood that the bulk density is mass per 
unit volume of soil and concentration is mass per unit volume of 
soil solution. The situation we deal with is that of a cylindrical root 
at the center of a soil cylinder. The root is supposed to be a member 
of a collection of uniformly distributed roots with length L (cm) 
and radius R0 (cm). If the root-length density is given by Lrv (cm 
cm−3), the radius R1 (cm) of the soil cylinder is

1
rv

1R
L

=
p

 	 [2]

From the assumed geometry, it follows that the condition at the 
outer boundary is that of vanishing flux F:

1 , 0R R= =F  	 [3]

The condition at the root surface is that of constant flux generated 
by constant demand of the plant. If the demand amounts to A (mg 
cm−2 d−1), each root has to take up at a rate of A/Lrv (mg d−1). The 
boundary condition at that part of the root surface that partakes 
in uptake is

0
rv

,
AR R S

L
= a =-F  	 [4]

where S is the root surface (cm2) and a is the fraction in contact 
with soil. For the remaining part of the surface, the flux is zero:

( )0 , 1 0R R S= -a =F  	 [5]

Two situations are considered: one where there is contact over the 
total length of the root but over a part of its radial surface, and the 
other is contact over the total radial surface and over a part of the 
longitudinal surface. The two situations are depicted in Fig. 2. The 
geometry of the root–soil system makes it preferable to express the 
equations in cylindrical coordinates R (the radial coordinate), y 
(the tangential coordinate), and Z (the vertical coordinate taken 
positive downward). In the case of partial radial contact no gradi-
ents in Z will occur, and likewise for partial longitudinal contact 
no gradients in y will occur. To simplify notation, dimension-
less variables and parameters will be used. In the derivations for 
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nutrient transport, we restrict ourselves to transport by diffusion. 
For the two situations, the set of equations are as follows.

Radial Partial Root–Soil Contact. This situation is 
depicted in Fig. 3. The partial differential equation in dimension-
less form is

2

2 2
1 1b c cr

t r r r r
¶ ¶ ¶ ¶

= +
¶ ¶ ¶ ¶y

 	 [6]

where b = B/Bi,, the initial bulk density; c = C/Ci, the initial con-
centration; r = R/R0, and t = DT/R0

2, where D is the diffusion 
coefficient and T is time. The symbols used are also explained in 
Table 1. The boundary conditions are given by

1
1

1

1, 0 ,

1, , 0

, 0 , 0

cr
r
cr
r
cr
r

¶ pw
= <y<y =-

¶ y
¶

= y <y<p =
¶
¶

=r <y<p =
¶

 	 [7]

where r = R1/R0, w = −r2/(2fh), with f = DCi/(AR0) is a supply–
demand parameter, h = L/R0, and R1 is given in Eq. [2]. The 
boundary condition at the root surface (where r = 1) states that 
at the part in contact with soil, given by the contact angle y1, the 
required uptake is a factor p/y1 larger than the uptake in the case 
of complete contact to satisfy the demand of the crop.

Longitudinal Partial Root–Soil Contact. The partial dif-
ferential equation is

2 2
2

2
b c cr
t r r r z

¶ l ¶ ¶ ¶
l = +

¶ ¶ ¶ ¶
 	 [8]

where z = pZ/L, l = L/(pR0) and the boundary conditions become

0

0 1
1 0

1

1, 0 , 0

1, ,

1, , 0

, 0 , 0

cr z z
r
cr z z z
r z z
cr z z
r
cr z
r
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¶
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¶
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¶
¶

=r < <p =
¶

 	 [9]

Water
For water, the pde is similar to that of solute, the bulk density of 
soil water is now given as water content q (mL cm−3), the transport 
coefficient k is the hydraulic conductivity (cm d−1), and the total 
head is equivalent to the concentration. The pde thus is

k H
T

¶q
=Ñ× Ñ

¶

 

 	 [10]

where H is the sum of the pressure head h (cm) and the gravita-
tional potential Z (cm):

Fig. 3. Schematic representation of a root in a soil cylinder; the posi-
tion of any point in the soil is given by polar (R,y) or Cartesian (X,Y) 
coordinates; the degree of contact is given by the angle y1.

Table 1. List of symbols.

Symbol Name Dimension Dimensionless symbol

R0 root radius cm –

D diffusion coefficient cm2 d−1 –

T time d t = DT/R0
2

Tu period of unconstrained 
uptake

d tu = DTu/R0
2

R radial coordinate cm r = R/R0

R1 radius soil cylinder cm r = R1/R0

Z vertical coordinate cm z = pZ/L

y tangential coordinate – –

L root length cm h = L/R0, l = L/(pR0)

2S root surface cm2 –

Ci initial concentration mg mL−1 –

C concentration mg mL−1 c = C/Ci

A uptake rate nutrient mg cm2 d−1 w = −r2/(2fh)

f supply/demand parameter – f = DCi/(AR0)

Bi initial bulk density mg cm−3 –

B bulk density of solute mg cm−3 b = B/Bi

q i
initial water content mL cm−3 –

q water content mL cm−3 –

Epot potential transpiration rate cm d−1 u = r2Epot/2h

a fractional contact between 
root and soil

– –

b buffer capacity mL cm−3 –

h pressure head cm –

H total head cm –

k conductivity cm d−1 –
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H h Z= -  	 [11]

The boundary condition for the part of the root surface in contact 
with the soil is (see Eq. [4])

p
0

rv
,

E
R R S

L
= a =-F  	 [12]

where Ep is the potential transpiration (mL cm−2 d−1 = cm d−1). 
The other boundary conditions are identical to those shown in 
Eq. [3] and [5].

An important difference between the transport of solute and that 
of water is that in the latter case the flux is nonlinear, that is, the 
conductivity is a nonlinear function of pressure head, whereas the 
solute diffusion coefficient is independent of concentration. By 
defining the matric flux potential F (cm2 d−1) (Raats, 1970) as

d , so that k h k hF= Ñ =ÑFò

the relevant equations get a simpler form, as shown below.

Partial Radial Root–Soil Contact (pr)
2

2 2
1 1R

T R R R R
¶q ¶ ¶F ¶ F

= +
¶ ¶ ¶ ¶y

 	 [13]

The boundary conditions are given by

1
1

1

1, 0 ,

1, , 0

, 0 , 0

r
r

r
r

r
r

¶F pu
= <y<y =-

¶ y
¶F
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¶
¶F
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 	 [14]

where

 

2
pot

2

Er
u=

h

Partial Longitudinal Root–Soil Contact (lr)
2 2

2
2r

t r r r z
¶q l ¶ ¶F ¶ F

l = +
¶ ¶ ¶ ¶

 	 [15]

The boundary conditions become

0

0 1
1 0

1

1, 0 , 0

1, ,

1, , 0

, 0 , 0

r z z
r

r z z z
r z z

r z z
r

r z
r
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¶
¶F pu
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¶F

= < <p =
¶
¶F

=r < <p =
¶

 	 [16]

Limiting Values. As mentioned above, the limiting concentra-
tion can be assumed to be zero. As soon as the concentration at 
that point of the root surface where the concentration is minimal 
becomes zero, the required uptake rate cannot be satisfied. For 
pr, the minimum is found at r = 1, y = 0 (Point A in Fig. 3). For 
lr, this point is found at either r = 1, z = 0 or z = p in the case of 
asymmetrical contact area, or z = p/2 in the case where the contact 
area is symmetrical.

For water, however, different options for the limiting value of 
pressure head are possible—for example, the pressure head at the 
permanent wilting point. We chose a limiting value based on a rela-
tion between leaf water potential and transpiration rate proposed 
by Campbell (1985, 1991) as described below.

Parameter Values and Functions Used
Root Parameters. We assumed that the majority of nutrients is 
taken up from the plow layer with an assumed thickness of 20 cm. 
This then is also the root length (L). The root radius (R0) was set 
at 0.025 cm. One of the goals of our study was to show the effect of 
root-length density (Lrv) so we used two values: 1 and 5 cm cm−3. 
The corresponding radius of the soil cylinder then became 0.56 
and 0.25 cm, respectively. The limiting concentration was set at 
zero for the reasons mentioned above.

Available Amount and Uptake Parameters. The amount 
of nutrients available for uptake was taken from the recommenda-
tions in the handbook of the Dutch extension service (http://www.
handboekbodemenbemesting.nl): 300 and 225 kg ha−1 for NO3–N 
and K, respectively. Nitrate is not adsorbed and K only slightly, with 
an adsorption constant of 10 mL cm−3. The recommendation for 
P is based on a water extraction method, the so-called PW number; 
from it and using the adsorption parameters given below, the corre-
sponding amount in kilograms P per hectare can be calculated (van 
Noordwijk et al., 1990). The adsorption isotherm was described as 
a two-term Langmuir equation, leading to the following relation 
between P bulk density and concentration:

1 1 2 2
P

1 21 1
b A C b A C

B C
b C b C

= + +q
+ +

 	 [17]

where q is the soil water content set at 0.3 mL cm−3. We did our 
calculations for two Dutch soils with widely different adsorption 
parameters: light sand and basin clay. The parameters are given in 
Table 2. Figure 4 shows the adsorption isotherm of the two soils.

Uptake parameters were based on a crop growth rate of 200 kg dry 
matter ha−1 d−1, a N content of 1.5%, a K content of 0.75%, and 
a P content of 0.22%, which results in uptake rates of 3, 1.5, and 
0.44 kg ha−1 d−1 for N, K, and P, respectively.

The uptake and supply of water are of a different character than 
those of nutrients. The available amount of nutrient in the soil is, 

http://www.handboekbodemenbemesting.nl
http://www.handboekbodemenbemesting.nl
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for arable crops in modern agricultural practice, on the order of 
the total uptake during the growing season, the length of which 
is ?100 d. The amount of water in the soil root zone is sufficient 
for a couple of weeks and is replenished by rainfall (and possibly 
sprinkler irrigation) during the growing season.

The limiting water content was taken as that water content where 
the possible uptake rate is just less than required. The actual tran-
spiration, in our approach, is a function of the leaf water potential. 
The functional relation is that proposed by Campbell (1985, 1991), 
which has the following form:

( )
act

pot 1/2

1

1
n

E
E h h

=
+

 	 [18]

where Eact is the actual transpiration (cm d−1), Epot is the potential 
transpiration (cm d−1), h is the soil water pressure head (cm), and 
h1/2 (cm) and n are parameters. The parameter values were taken 
from Kremer et al. (2008): h1/2 = −16,600 cm and n = 7. By assum-
ing steady state in the root–leaf path, the pressure head at the root 
surface can be calculated for the case where the actual transpira-
tion is 99% of the potential transpiration. This is the limiting value 
that is dependent on potential transpiration, conductance in the 
root-xylem–leaf-xylem path, the conductance in the root-surface–
root-xylem path, the root-length density, and the degree of contact. 
The calculations were done for two soils taken from the Staring 
series (Wösten et al., 2001), a sandy soil B3 and a loamy soil B13 
with different hydraulic properties (see Fig. 5).

66Solutions and Results
Steady-Rate Solution
Because of the nature of the boundary conditions (constant flux 
at the root surface and zero flux at the outer boundary of the soil 
cylinder), a steady-rate situation develops, where the rate of change 
becomes independent of time and, in the case of transport by diffu-
sion only, also independent of position. The steady change rate can 
be found from a simple balance. The decrease in the total amount 
of nutrient or water equals the total uptake rate:
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 	 [19]

By definition, steady rate implies independence of time and here, 
also, independence of coordinates. Then one finds, on evaluating 
the integral, the following:

( ) ( )
2

2 2 2 1
1 0 1 2 2

1 0

,  or 
R AB BR R L R A

T T R R L
¶ ¶

p - =-p =-
¶ ¶ -

       [20]

In dimensionless variables, this becomes
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 	 [21]

Substitution of Eq. [19] into Eq. [1], [3], or [5] leads to a linear 
pde, even in the case of a nonlinear relation between b and c. The 
steady-rate pde can be solved using the finite cosine transform 
(Churchill, 1972). For the pr situation, the solution (the deriva-
tion can be found in de Willigen and van Noordwijk, 1987a) is
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For the lr situation, the solution is
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Table 2. Parameters of the two-term Langmuir equation (Eq. [17]) for 
two soils.

Parameter Fine sand Basin clay

b1, mL mg−1 500 16,000

b2, mL mg−1 8.5 130

A1, mg cm−3 0.16 0.15

A2, mg cm−3 0.19 0.49

Fig. 4. Phosphorus adsorption isotherm for fine sand and basin clay; 
the points indicate the position of adsorbed P for a PW number of 40 
mg P2O5 L−1 soil.
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The symbols In and Kn indicate modified Bessel functions of the 
first and second kind, respectively, and order n.

Period of Unconstrained Uptake
An important time parameter is the length of the period of uncon-
strained uptake (tu), that is, the period during which the uptake 
rate equals the demand of the crop. For the situation of partial 
radial contact, the minimum concentration is found at Point A in 
Fig. 3 with coordinates r = 1 and y = 0. When the concentration 
at this point reaches the limiting value, the required uptake can 
no longer be maintained. The period of unconstrained uptake can 
accordingly be calculated by setting c(1,0,tu) = clim = 0:
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Solving Eq. [24] for tu results in
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where tu,max is the dimensionless form of the maximum uptake period, 
that is, the total available amount divided by the required uptake:
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and
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Because r is >10, Eq. [25] can be well approximated by
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The period of unconstrained uptake in the case of complete contact 
can be given similarly to Eq. [27] as
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It is convenient to express the concentration at tu with respect to 
the limiting concentration at Point A in Fig. 3:
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For the longitudinal situation (lr), the location of the minimum 
concentration is, depending on the position of the contact area, 
either at the upper or lower end of the root surface or at the center 
of the contact area. The z coordinate of the minimum concentra-
tion is denoted by zmin, and so zmin can have the values 0, p, or p/2. 
The concentration at the point (1, zmin) and t = tu is
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and the period of unconstrained uptake is found as
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If z0 = zmin = 0, Eq. [29] becomes
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Fig. 5. The relation between diffusivity and water content for two soils 
from the Staring series.
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which has a lot in common with Eq. [27].

As before, a general equation for the concentration at t = tu can be 
obtained by giving the concentration with respect to the limiting 
concentration:
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Equations [27] and [32] can be used to check if the limiting value 
is reached before the steady-rate phase has begun. A sine qua non is, 
of course, that tu ³ 0, but this condition is not sufficient; a stronger 
condition is the requirement that the maximum concentration is 
less than its initial value (c = 1). The maximum value is found at 
the point (r,p) for pr and at points (r,p) or (r ,0) for lr. In doing 
so, we found that with the parameter values used in the lr situa-
tion, the minimum concentration becomes zero before steady rate 
is achieved.

In the case of nonlinear adsorption, where the steady-rate solution 
is valid, tu can be calculated by integration of the bulk density B 
calculated with Eq. [29] or [32] and the parameters of the adsorp-
tion isotherm to obtain the amount of nutrient at tu. This amount 
is then subtracted from the initial amount and the result is divided 
by the uptake rate with tu as a result. If the steady-rate solution 
cannot be used, the relevant pde is numerically integrated.

Equi-concentration Lines and Streamlines
Figures 6 and 7 show the equi-concentration lines and the stream-
lines for pr and lr contact, respectively. The results pertain to a 
nutrient that is not adsorbed by the soil, that is, Ka = 0, for example, 
for NO3. The transport distances for pr are on the order of a few 
millimeters and in case of lr, on the order of a decimeter or more 
in the case of an asymmetric position of the contact area. This also 
implies that for the pr situation the steady-rate solution can be used. 
For the lr situation, however, the steady-rate solution cannot be 
used, even in the case of high fractional contact and low adsorption, 
so we derived the complete solution of the concentration valid for 
the time prior to steady rate.

Complete Solution for the Partial 
Longitudinal Root–Soil Contact Situation
The pde and boundary conditions are given in Eq. [8] and [9], and 
the initial condition is that of uniform bulk density:

0 1 i0, , 0 ,T R R R Z L B B= £ £ £ £ =  	 [34]

In the case of a linear adsorption isotherm, the concentration is 
proportional to the bulk density:

a, where 
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b

 	 [35]

In dimensionless symbols, the pde Eq. [8] becomes
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With the boundary conditions in Eq. [9] and the initial condition,

0, 1 , 0 , 1r z ct= £ £r £ £p =  	 [37]

By applying the cosine transform and the Laplace transform, the 
solution could be found as (here shown in parts for subsequent 
explanation):
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where

Fig. 6. Equi-concentration lines and streamlines (dashed) when steady 
rate is attained in the radial situation; fractional contact = 0.25, no 
adsorption, root-length density = 1 cm cm−3, R0 = 0.025 cm.
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Fig. 7. Equi-concentration lines (left) and streamlines (right) in the longitudinal situation with fractional contact of 25% for (a) symmetrical and (b) 
asymmetrical position of contact area; fractional contact = 0.25, no adsorption, root-length density = 1 cm cm−3.
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Equation [38a] is the steady-rate solution for complete contact; Eq. 
[38a] and [38b] give the complete solution (transient and steady 
rate) for complete contact. Complete contact implies z0 = 0 and 
z1 = p and consequently, p(k) = 0. Equations [38a] and [38c] give 
the steady-rate solution for partial contact.

66Results
Figure 8 (left) shows the period of unconstrained uptake for 
NO3 with a required uptake rate of 3 kg ha−1 d−1 and an avail-
able amount of 300 kg ha−1 and a root-length density of 1 and 
5 cm cm−3 and for both longitudinal and radial partial contact, 
respectively. In the latter situation, there is practically no influ-
ence of degree of contact or root-length density; the realized 
uptake period is almost equal to the maximum of 100 d. This is 
in contrast to the longitudinal situation where the degree of con-
tact has a strong influence on the length of the unconstrained 
uptake period, especially if the contact area is asymmetrically 

positioned. Here again, the root-length density hardly inf lu-
ences Tu at a fractional contact >0.5. When mass f low, generated 
by transpiration of 0.3 cm d−1 occurs, this results in an increase 
of 70 d of Tu.

A larger root-length density leads in our scheme to smaller trans-
port distances radially; for instance, for an Lrv of 5 cm cm−3 the 
distance between the root surface and outer boundary of the soil 
cylinder is about half of that for an Lrv of 1 cm cm−3. So, in the 
radial situation, the longest transport distance is halved. In the case 
of longitudinal partial contact, the longest distance is still of the 
order of 10 cm. To illustrate this further, Fig. 9 was constructed. It 
gives the difference in the period of unconstrained uptake between 
a root-length density of 5 and 1 cm cm−3 for a solute that is linearly 
adsorbed with an adsorption constant of 10, a required uptake 
of 1.5 kg ha−1, and an available amount of 225 kg ha−1. The dif-
ference in uptake period is, in the longitudinal situation, almost 
independent of fractional contact and especially at lower contact 
less than the difference in the radial situation.

Figure 10 shows the difference in Tu as a result of the difference in 
root-length density for a nutrient with nonlinear adsorption, for 
example, P. Above, we showed the P-adsorption isotherms (Fig. 
4) for two Dutch soils (fine sand and basin clay). The adsorption 
isotherms of these soils differ substantially: the amount of avail-
able P at a PW number of 40 is 318 and 80 kg ha−1 for basin clay 
and fine sand, respectively, and the average adsorption constant 
amounts to 354 and 70, respectively. The results shown in Fig. 8 
and 9 are qualitatively the same as those for nutrients with linear 
adsorption; the effect of an increase in root-length density is higher 
for the radial than for the longitudinal partial contact.

Fig. 8. The period of unconstrained uptake (Tu) of NO3 with a required uptake rate of 3 kg ha−1 d−1 and initial available amount of 300 kg ha−1 
for partial radial and longitudinal contact, the latter for asymmetrical and symmetrical position of contact area, as a function of the degree of partial 
contact, with mass flow generated by a transpiration rate of 0.3 cm d−1 (left) and the difference in Tu between root-length densities (Lrv) of 5 and 
1 cm cm−3 (right).
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Fig. 9. The period of unconstrained uptake (Tu) for a nutrient like K with an adsorption constant of 10 mL cm−3, an initial available amount of 225 
kg ha−1, and an uptake rate of 3 kg ha−1 d−1 for partial radial and longitudinal contact, the latter for asymmetrical and symmetrical position of contact 
area, as a function of the degree of partial contact (left) and the difference in Tu between root-length densities (Lrv) of 5 and 1 cm cm−3 (right).

Fig. 10. The period of unconstrained uptake (Tu) for P and two soils, fine sand and basin clay (the nonlinear adsorption isotherms are given in Fig. 4) as 
a function of the degree of partial contact for radial and longitudinal asymmetrical contact (left) and the difference in Tu between root-length densities 
(Lrv) of 5 and 1 cm cm−3 (right).
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Figure 11 is similar to Fig. 7 through 9, but here the uptake of water 
is considered. An increase in root-length density hardly leads to an 
increase in the period of unconstrained uptake.

66Discussion
The first question formulated in the introduction (Can the analyti-
cal steady-rate solutions for nutrient and water uptake be adjusted, 
given cylinder geometry, to partial root–soil contact effects in 
either radial or longitudinal representations?) can be answered in 
the affirmative, as the steady-rate solution can be used for the pr 
situation. However, for the lr situation, this is not always the case 
because the limiting value can be reached before a steady-rate phase 
has developed. In case of linear adsorption, the analytical solution 
given in Eq. [37] can be used. For water and some nutrients (P), the 
steady-rate approach can be used. (See Fig. 10.8 in de Willigen and 
van Noordwijk, 1987a).

As to the second question (Is there a simple expression for the 
additional root-length density needed in a layer of soil to account 
for the more complex root–soil geometry through use of the stan-
dard model but with adjusted effective root-length density?), also 
a mixed answer can be given. It is clear that the pr situation with 
quantitatively the same surface in contact with the soil solution is 
more favorable than the lr situation. This has to do with the lower 
transport distances (Fig. 6 and 7). So one should expect that with 
partial radial contact a substantial increase in root-length density 
would result in a substantial increase in the length of the period of 
unconstrained uptake. However, as Fig. 8 shows, in the absence of 
adsorption and with a large amount of available nutrient, a fivefold 
increase in root-length density leads to a very modest increase in 
Tu. The value of the dimensionless tu,max is 2.104 and the rest term
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(see Eq. [27]) is, even at a partial contact of 0.1, <2% of tu,max 
for a root length density of 1 and ?0.3% for Lrv = 5; for con-
tact of 0.9, the rest term is 0.6 and 0.06% for Lrv = 1 and 5, 
respectively. So even at low root density and low contact, Tu is 
close to its maximum value, and a fivefold increase in Lrv hardly 
increases Tu because of the low value of b(0.3). In the case of K, 
tu,max is 3.7 ´ 104, almost twice the value for NO3, but for b = 
10.3, the rest term is consequently larger; in the case of partial 
contact of 0.1, the ratio rest term/tu,max is 42 and 5.3% for Lrv 
= 1 and 5, respectively; for partial contact 0.9, the ratio is 12.5 
and 4.2%. Figures 9 (right) and 10 (right) show that the effect 
of increased root-length density is considerably higher in the pr 
situation than in the lr situation. Figure 11 shows that also for 
water the effect of root-length density is almost negligible. This 
has to do with the high value of diffusivity in the range between 
the initial pressure head (−100 cm) and the limiting pressure 
head (approximately −5000 cm). The diffusivity in this range 
amounted to 350 to 1 and 1200 to 42 cm2 d−1 for the sandy (B3) 
and the loamy (B13) soils, respectively.

For the basic situation, we mentioned the possibility of approxi-
mating the partial contact at a given root-length density with 
an effective root-length density and complete contact such that 
total contact was the same. An example is a root system with 
a root-length density of 1 cm cm−3 and a partial contact of 0.1 
approximated by a root-length density of 0.1 cm cm−3 with com-
plete contact. Again, Eq. [27] can be used (in the case of partial 
radial contact) to calculate tu for both cases, and it appears that the 
approximation results in lower tu both for NO3 and K.

Fig. 11. The period of unconstrained uptake (Tu) for water and two soils with different hydraulic properties as a function of the degree of partial contact 
for radial and longitudinal asymmetrical contact (left) and the difference in Tu between root-length densities (Lrv) of 5 and 1 cm cm−3 (right).
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All current 3-D models assume 100% root–soil contact and radial 
symmetry around roots while evaluating the consequences of mass 
flow plus diffusion for transport (Dunbabin et al., 2013). They 
avoid the assumption that all transport is directed toward the 
nearest root (as typically made in single-root models), but spatial 
resolution is limited and deviations from the uptake-shed assump-
tion have not yet been convincingly demonstrated. It is likely that 
the partial contact situations considered here will lead to devia-
tions from the Dirichlet tessellation of uptake-sheds based on 
distances to the nearest root, as actual transport pathways will 
differ from straight lines (as demonstrated by the streamlines in 
Fig. 6 and 7).

When two-dimensional cross-sections of 3-D root–soil realities 
are analyzed, the statistical distribution of angles with which 
roots intersect any plane can be estimated from the ratio of the 
maximum and minimum diameters of the root intersection (van 
Noordwijk et al., 1992). Deviations from a uniform distribution 
of angles (anisotropy) matter for estimates of root-length density 
from intersection density in two-dimensional maps, but the effects 
are small if point densities on mutually perpendicular planes are 
averaged.

The two contact situations considered here are the two extremes 
of the way partial root–soil contact interacts with uptake. The 
reality of root systems developing in aggregated, structured soils 
will probably be in between these two geometries. Results for the 
radial case (Fig. 12, left) show that uptake potential of roots is 
higher than that for roots with full contact at a density corrected 
for the percentage contact. The results for the longitudinal case 
(Fig. 12, right), in contrast, show a reduction in uptake potential 
more than proportional to the percentage contact. For mixed 
contact situations, multiplying root length density with contact 
fraction is possibly acceptable as an approximation. This comes on 
top of a correction for the irregular distribution of roots (as quan-
tified in the root position effectivity ratio Rper of van Noordwijk, 

1992) but is probably compensated by the ability of root systems to 
preferentially branch near locally enriched parts of the soil, with 
the strength of the local response dependent on current nutrient 
deficiencies in the plant as a whole. Where the focus is on a quan-
titative understanding of the soil nutrient supply situations where 
plant nutrient uptake is not growth limiting, measured root-length 
density (corrected for mycorrhizal hyphae) remains the primary 
parameter of interest, with the complexities of actual root–soil 
geometry as secondary modifiers.

Incomplete root–soil contact is but one of several aspects that has 
so far been ignored in common models of water transport in the 
soil–plant continuum along with water storage in the plant xylem 
and coarse roots (capacitance effect) and hydraulic architecture 
of leaf system (inductance effect) (Zhuang et al., 2014). More 
comprehensive models are emerging and provide insights into the 
important role of plant configuration and hydraulic heterogeneity 
in helping plants survive an adverse environment. As reviewed by 
dos Santos et al. (2017), in an update from earlier reviews of one-, 
two-, and three-dimensional models by Vrugt et al. (2001), detailed 
physical models describing root water uptake are an important tool 
for the prediction of soil water dynamics and crop transpiration, 
but the hydraulic parameters involved are hardly ever available, 
making them less attractive for many studies. A range of simpler 
empirical models keep track of the soil water balance but differ 
in (i) how root water uptake is partitioned over depth (with com-
pensation in wetter soil layers for reduced uptake elsewhere in the 
root system) and (ii) how the transpiration reduction function is 
defined that slows down uptake from dry soil. Physical consider-
ations of root–soil contact are relevant for the first case if contact 
varies with depth and in the second case if shrinking roots would 
lose soil contact in layers that still have plant-available water.

In their review of the complex, 3-D, and highly dynamic habitat 
offered by pores in the vadose zone, Hallett et al. (2013) called for 
a more process-based understanding of how biological processes 

affect the physical properties of soil across spatial scales 
and time that goes beyond descriptions of the complexity. 
Starting from roots as (part of) live organisms with high 
phenotypic plasticity and genetic selection on the effective-
ness of the feedback loops can help in this respect. Our 
equations indicate the increases in root-length density 
needed in realistic geometries to achieve the same uptake 
as the idealized simple root geometry models predict. In 
many situations, this increase is within the existing error 
and uncertainty of root measurements in the field.

Thus, the consequences for water and nutrient uptake of 
partial root–soil contact of the type found where roots 
grow into a preexisting void larger than their own diameter 
will be small, especially if root hairs can be expected to 
develop to compensate for partial contact. It may be justi-
fied to ignore the associated complications for transport 

Fig. 12. The period of unconstrained uptake of the radial (left) or longitudinal 
(right) situation for partial and complete contact. The x axis gives fractional con-
tact in the case of partial contact, with a root-length density of 1 cm cm−3, and 
root-length density in the case of complete contact. The nutrient parameters are 
those of K given for Fig. 9.
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pathways close to roots, as is commonly done in existing 3-D 
models. In contrast, the type of partial contact that arises when 
roots penetrate soil aggregates but traverse voids between them 
will generally not be negligible, but impacts on uptake can, for the 
radial contact situation, be bounded by a reduction of effective root 
length to the part in (full) contact with soil.

66Conclusions
The consequences for water and nutrient uptake of partial root–
soil contact of the type found where roots grow into a preexisting 
void larger than their own diameter will be small, especially if root 
hairs can be expected to develop to compensate for partial contact. 
It may be justified to ignore the associated complications for trans-
port pathways close to roots, as is commonly done in existing 3-D 
models. In contrast, the type of partial contact that arises when 
roots penetrate soil aggregates but traverse voids between them 
will generally not be negligible, but impacts on uptake can, for the 
radial contact situation, be bounded by a reduction of effective root 
length to the part in (full) contact with soil. Technical conclusions 
for use in further uptake models are that (i) the steady-rate solution 
for Tu can be applied to the situation of pr but is less applicable to 
lr even in the case of non-adsorbed nutrients like NO3, and (ii) 
the steady-rate solution can also be applied in the case of pr for 
nonlinearly adsorbed nutrients and water.
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