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Abstract

Background and aims Trade-offs between ecological
benefits and potential yield and growth reductions asso-
ciated with the inclusion of shade trees in cocoa
agroforests remain poorly understood. In this study we
investigate interactions between shade and cocoa trees
in cocoa agroforests in terms of soil fertility and cocoa
productivity.

Methods We quantified the effects of individual
shade trees from 11 commonly intercropped spe-
cies on cocoa growth (aboveground biomass) and
yield and soil fertility indicators (total soil car-
bon, nitrogen, phosphorus contents and soil ag-
gregation) at field sites in Southeast Sulawesi,
Indonesia.

Results Shade trees had a net positive effect on
soil fertility in cocoa agroforests, with a 6% in-
crease in soil carbon, a 4% in soil nitrogen and a
24% increase in mean weight diameter (used as an
indicator for median soil aggregate size), under
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shade tree canopies compared to open areas. We
found that shade trees had a net negative effect on
cocoa tree growth and no net effect on cocoa
yields. We were not able to link costs versus
benefits with specific shade tree traits, but never-
theless observed significant differences between
shade tree species. G. sepium (gliricidia) had sig-
nificantly positive effects on yields, soil carbon
and aggregation. N. lappaceum (rambutan) and
D. zibethinus (durian) had significantly positive
effects on soil carbon and nitrogen contents and
on aggregation, but not on yields.

Conclusions Our findings confirm the potential for soil
improvements under shade trees and suggest that the
inclusion of individual shade trees does not always
constitute a direct trade-off for farmers in terms of yield
losses.

Keywords Agroforestry - Soil fertility - Yields -
Theobroma cacao - Shade trees

Abbreviations

AGB  Above-ground biomass
C Carbon

LM Large macroaggregates
m Microaggregates
MWD Mean weight diameter
N Nitrogen

P Phosphorus

sM small macroaggregates

s+c¢ silt & clay particles
SOM  Soil organic matter
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Introduction

On a global scale, smallholder Theobroma cacao
(cocoa) cultivation systems are facing increasing pro-
duction pressures related to factors such as soil degra-
dation or pest and disease outbreaks (Vaast and
Somarriba 2014). The inclusion of shade trees in cocoa
agroforests has been heralded as a solution to these
issues, with proposed benefits ranging from increased
livelihood sources to improved nutrient cycling process-
es and increased ecosystem resilience (e.g. Beer et al.
1998; Somarriba et al. 2013). However, shade trees are
also likely to compete for light and/or nutrient resources
with neighboring crops (Sanchez 1995), and to date it
remains unclear to what extent the benefits versus dis-
advantages associated with shade trees ultimately im-
pact soil fertility and yield productivity in cocoa
agroforests.

In the humid tropics, plot-scale studies of the inclu-
sion of shade trees in cocoa cultivation systems have
shown positive contributions for carbon storage, biodi-
versity and afforestation (Clough et al. 2009; Jagoret
et al. 2012; Schroth et al. 2015), but also evidence of
trade-offs in terms of competition for light, water and
nutrients and yield productivity (Abdulai et al. 2018;
Asare et al. 2017; Blaser et al. 2018). The overall out-
come of trade-offs from interactions between shade and
crop trees can be difficult to pinpoint at systems scales.
A better understanding of tree effects at individual tree
scales could inform farmers’ selection of shade trees in
cocoa agroforests, providing them with improved adap-
tation strategies to climate change and food and income
insecurity (Graefe et al. 2017).

In cocoa agroforests, the effects of isolated trees on
soil fertility and nutrient storage dynamics have been
documented to some extent (Blaser et al. 2017; Isaac
et al. 2007b). However, species-related effects of isolat-
ed shade trees on soils remain understudied. In particu-
lar, studies of shade tree effects on soil aggregate stabil-
ity, an important indicator for long-term soil fertility,
remain scarce both in tropical and temperate agroforest-
ry systems and do not investigate differences between
species (Blaser et al. 2017; Lehmann et al. 2001). In
diverse cocoa agroforests, litter and root residue from
shade trees constitute a significant source of organic
matter inputs (Schneidewind et al. 2018). Soil aggregate
structures play an important role in soil organic matter
(SOM) storage and turnover as they physically protect
organic matter compounds from mechanical or
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microbial degradation over time (Tisdall and Oades
1982). As aggregates degrade over time, nutrients are
released and become available for uptake by main
cropping trees (e.g. cocoa). Shade trees are thus thought
to contribute to soil fertility through improved aggregate
formation, although field data on these effects remain
lacking.

In the context of cocoa agroforests, costs and benefits
associated with shade trees are highly dependent on
selected tree species and local climate (Beer et al.
1998; Isaac et al. 2005). High variability in morpholog-
ical traits of common shade trees, such as canopy and
root system architecture, or litter and root chemistry,
might lead to a range of effects on cocoa growth and
productivity. First, shade tree canopies can impact light
resources and limit cocoa yields, particularly in environ-
ments where nutrient availability is not a limiting factor
(Beer et al. 1998; Isaac et al. 2007a). Second, the quality
and quantity of litterfall can vary substantially between
tree species (Hobbie et al. 2006; Sariyildiz et al. 2005).
In cocoa agroforests, the inclusion of shade trees is
therefore likely to affect litter inputs and nutrient cycling
in cocoa farms. Third, shade-tree roots and root-
associated fungi, another important source of soil organ-
ic matter in agroforests (van Noordwijk et al. 2004), are
similarly likely to impact below-ground interactions in
mixed cocoa agroforest. And fourth, trees with deeper
roots are known to access and recycle water and nutri-
ents from deeper soil layers (Bayala et al. 2008; Van
Noordwijk and Purnomosidhi 1995), although there are
also risks of significant root competition for moisture
and nutrients between cocoa, which has shallow roots,
and other shade trees (Beer 1987). While some tree-
associated traits, such as extensive shallow rooting sys-
tems and dense spreading canopies, are thought to lead
to direct resource competition between trees and crops,
others, such as nitrogen-fixing (N-fixing) capacity, are
thought to improve soil fertility and therefore provide
indirect benefits to understory crops (Rhoades 1996).
Ultimately, the cumulative outcome of potential costs
and benefits of shade trees has rarely been documented,
and on-farm studies of soil fertility parameters under
shade trees remain scarce, particularly in cocoa
agroforests.

An improved understanding of the interactions
between shade trees and cocoa trees in cocoa
agroforests would contribute valuable knowledge
needed to optimize the sustainability and resilience
of tropical agroforestry systems. The principal goal
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of our study was to quantify the effects of indi-
vidual shade trees on soil fertility and cocoa pro-
ductivity in Southeast Sulawesi, Indonesia, for the
most common species found in the region. Indo-
nesia is currently the 3rd biggest producer of co-
coa globally (FAOSTAT 2011). Cocoa is cultivated
across about 1.5 million ha and constitutes one of
Indonesia’s most important agricultural export
products, generating about $1.2 billion annually.
Approximately 71% of the country’s cocoa sup-
plies are currently produced on the island of Sula-
wesi (Witjaksono 2016).

We tested whether observed differences in the
effects of shade trees might be linked to specific
functional traits (absolute height, canopy height,
canopy area, litter nutrient contents and above-
ground biomass (AGB)). We hypothesize that soil
fertility increases (as indicated by total carbon (C),
nitrogen (N), phosphorus (P) and soil aggregation
(MWD)) will vary under different shade tree spe-
cies. We further investigate under which tree spe-
cies trade-offs between predicted soil fertility ben-
efits and competitive effects for other resources are
minimized, leading to positive effects on cocoa
productivity (as indicated by AGB and yields).

Materials & methods
Description of the study area

We conducted our study in the Konawe province of
Southeast Sulawesi, Indonesia (3.58°S, 122.30°E),
where cocoa is the most prevalent cash crop. Cocoa
production systems in SE Sulawesi range from mono-
culture to diversified agroforests integrating cocoa with
shade, fruit and timber trees (Janudianto et al. 2014;
Wartenberg et al. 2017). Farmers in SE Sulawesi do
not conduct specific soil or tree management in their
cocoa systems due to farmers’ limited capital, inputs and
labor. Fertilizer management in cocoa AFS varies from
none to very low levels of (mostly NPK) application
around cocoa tree trunks (personal communications
with farmers). The lack of intensive management ap-
proaches is related to the fluctuating market price for
cocoa in the region, along with limited access to market
information and low market transparency (Janudianto
et al. 2014; Mithofer et al. 2017).

Fifty-six experimental plots were selected around
individual shade trees located in smallholder farms in
the community of Wonuahoa, where soils are predom-
inantly orthic acrisols (FAO-UNESCO 1979). Mean
annual precipitation is 2080 mm (1982-2012) and high-
ly seasonal, with most rain falling from January to June.
Mean daily temperatures range is 25 °C to 28 °C, de-
pending on time of the year and elevation (Climate-
Data.org 2016).

Shade tree selection and characterization

Cocoa farms at the study location were mostly
lightly shaded agroforests. In SE Sulawesi, recom-
mended spacing for shade tree species varied from
3x3 m (for cocoa and coconut) to 10 x 10 m (for
rambutan, langsat, durian and mango). While
farmers followed recommended spacing for cocoa,
actual spacing of shade-tree species varies greatly
across farms and tends to be much wider than
these recommendations. Gliricidia was the most
commonly intercropped shade tree species in these
systems; other species were represented more
sporadically.

We selected 11 of the most commonly
intercropped shade tree species found in cocoa
farms in Southeast Sulawesi: Gliricidia sepium
(gliricidia), Nephelium lappaceum (rambutan),
Lansium domesticum (langsat), Durio zibethinus
(durian), Artocarpus heterophyllus (jackfruit),
Anthoccephalus cadamba (jabon), Psidium guajava
(guava), Mangifera indica (mango), Parkia
speciosa (petai), Cocos nucifera (coconut), and
Gmelina arborea (gmelina) (Table 1). Theobroma
cacao (cocoa) trees were included in our analyses.
All individual trees selected for this study were
located close to each other in cocoa farms of
similar ages (7 to 12 years since establishment
on land cleared from primary forest).

As we were interested in the effect of individual
shade tree species, we selected 3-5 replicates of
separate species occurring in the area (Table 1).
Our sampling methodology was adapted from
Isaac et al. (2007b): at each sampling site we
selected isolated shade trees within cocoa farms,
which were separated from the edge of adjacent
shade canopies by at least 10 m. Sub-plots were
delimited around each site to represent two sam-
pling distances from the shade tree trunk: 1)
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1)

“canopy’

samples were collected under the shade

tree canopy but outside of the canopies of cocoa
trees (and up to a maximum distance of 5 m from

the central shade tree trunk); 2) “no canopy’

Sam-

ples were located in open areas (and at a maxi-
mum distance of 10 m from the central shade tree
trunk) (Fig. 1). Because cocoa farmers generally
determined the planting locations of shade trees
based on species-specific spacing recommendations
from extension agents, the selection of shade trees
which were planted in microsites with favorable
soil properties is highly unlikely. All sampling
sites were located on flat terrain in the same valley
around Wonuahoa village and on soils with similar
texture (clay loam). Sites were selected on adja-
cent farms which were managed similarly in terms
of shade tree pruning practices and fertilizer

application.

Shade-tree and cocoa tree metrics

For all shade trees, we recorded diameter at breast
height (D; in cm) and tree height (H; in m),
measured with a Haglof ECII hypsometer. Specific
wood density (p) was determined based on ICRAF
database values (Harja et al. 2018). Where no data
was available we applied an average p value for
all species. We estimated above-ground biomass
(AGB) based on p, D and H for each individual

a

o -

“no canl y”
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g / cocoa trees
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central trunk

shade tree according to the following pantropical
allometric equation developed by Chave et al.
(2014):

AGBey = 0.0673 x (p x D* x H)""™

We additionally recorded lower canopy height
(m) for each shade tree. Canopy area (m”) was
estimated based on radius (m) measurements in
four directions from each shade tree trunk. While
cocoa, gliricidia and rambutan may be deciduous
during the dry season, in more humid locations
like the study area they may not lose their leaves.
We collected litter samples under each individual
shade tree in April through May 2015, using 50 x
50 cm mesh litter traps placed directly under tree
canopy at 50 cm above the ground. Litter samples
were collected 2 to 3 weeks after installation of
the traps, and then air-dried and ground in a coffee
grinder. Samples were then transported to ETH
Ziirich and analyzed for C- and N-contents using
dry combustion (CN-2000; LECO Corp., St Jo-
seph, MN). Litter micro-nutrient concentrations
(P, Ca**) were determined using wet digestion
with HNO3; and H,O, and emission spectroscopy
(ICP-OES 5100, Agilent Technologies, Santa
Clara, CA).

Within each sampling site we marked all
“canopy” and “no canopy” cocoa trees (Fig. la).
For all selected cocoa trees, we recorded the

b

transect 1

® 200%

100%

P 50%

transect 4 transect 2

A

“canopy”
sampling location
[ ]

“no canopy”
sampling location
transect 3

Fig. 1 Visual representation of the field design for a) measurements of cocoa productivity and b) soil sampling
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distance of each cocoa tree from the central shade
tree trunk, as well as D and H. AGB was estimat-
ed based on the specific allometric equation for
cocoa developed by Smiley and Kroschel (2010):

AGByoeoa = 0.202 kg x D*!12

Potential yields for each individual cocoa tree (V=
898) were determined by pod counts in April-May
2015, between the end of pod maturation and the start
of cocoa harvest in Sulawesi.

Soil sampling and analysis

At each individual shade tree site, as well as for
the cocoa control sites, we laid out four perpen-
dicular transects radiating out from the central tree
trunk (Fig. 1b). We collected four topsoil (0—
15 cm depth) samples each for two locations: at
50% of shade-canopy diameter (“canopy”), and at
200% of shade-canopy diameter in open areas (“no
canopy”). Samples were composited to obtain one
sample per location (“canopy” and “no canopy”)
for each individual shade tree, processed through
an 8 mm sieve to remove rocks, macro-fauna and
large organic material, and then air-dried. All sam-
ples were then transported to ETH Ziirich, where
they were passed through a 2 mm sieve and finely
ground for subsequent analysis.

For the five most common tree species
(gliricidia, langsat, rambutan, durian, jackfruit)
and for cocoa plots, we collected 4 intact cores
(0—15 cm) per location (“canopy” and “no
canopy”) for aggregate fractionation using a ham-
mer corer (@ 5.5 cm). Weight, soil moisture con-
tent and bulk density were determined for each
individual core. Cores were then carefully sieved
through an 8 mm sieve by gently breaking soil
clumps along natural planes of weakness (Six
et al. 1998), and composited, yielding one sample
per location. All samples were air-dried and
packed in solid containers to avoid disrupting ag-
gregate structure during transport to ETH Zurich.
Sub-samples of 80 g were then fractionated using
wet sieving methodology adapted from Elliott
(1986) and described in Six et al. (2000) to deter-
mine stable aggregate size-distribution. Mean
weight diameter (MWD), which we used as an
index for median aggregate size, was calculated
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based on the proportions of large macroaggregates
(LM; >2000 pm), small macroaggregates (sM;
250-2000 wm), microaggregates (m; 53-250 pum),
and free silt and clay (s+c; <53 pum) particles
according to Van Bavel (1950):

MWD = 5(LM) + 1.125(sM) + 0.1515(m) + 0.0265(s + ¢)

Soil nutrient concentrations were determined for
“canopy” and “no canopy” composite samples un-
der 11 species and cocoa (N=12 Species * 2
Locations * 3-5 Replicates=112), as well as for
“canopy” and “no canopy” aggregate fractions un-
der 5 species and cocoa (N=6 Species * 2 Loca-
tions * 5 replicates * 4 aggregate fractions =240).
Total soil C and N concentrations were determined
at ETH Ziirich, using a dry combustion analyzer
(CN-2000; LECO Corp., St Joseph, MN). Total
soil P was determined colorimetrically after heat
digestion with H,0,, H,SO,4, Se and LiO4S ex-
traction (method adapted from Anderson and
Ingram (1994)).

Statistical analyses

We used linear mixed models to analyze how
shade trees in cocoa agroforests affect soil nutrient
contents (total C, N and P, and C- and N-within-
aggregate-fractions), soil aggregation (indicated by
MWD), and cocoa above-ground biomass (cocoa
AGB) and yields. We specifically tested 1) differ-
ences in soil parameter values under shade tree
“canopy” locations, relative to “no canopy” open
reference positions (“tree effect”), and ii) whether
the magnitude of this effect differed between the
selected shade tree species (“species effect”). Lin-
ear mixed-effects models were fit using the Ime
function developed for R (Pinheiro et al. 2016).
We used location and shade tree species as our
fixed variables and assigned replicates for each
shade tree species as random effects. For each
response variable, we subsequently ran two-tailed
t-tests to assess whether the “tree effect” under
each shade tree species was significantly different
from zero. To visualize the magnitude of the ef-
fects on soil C-, N- and P-contents, and MWD, we
calculated the difference between measured “no
canopy” and “canopy” values.
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We performed linear regressions to assess i)
whether cocoa AGB and yields changed with in-
creasing distance from the trunks of shade trees;
and ii) whether differences in cocoa AGB and
yields were directly related to changes in soil N-
and P-contents. For both analyses shade tree spe-
cies was used as a covariate.

To assess whether observed differences in the
effects of different tree species could be ascribed
to shade tree functional traits, we further carried
out multiple linear regressions to explore inter-
actions between the effects of shade trees in
cocoa agroforests and variation in the shade tree
traits selected for our dataset (Table 1). We first
tested for relationships between relevant shade
tree traits (litter nutrient contents, tree and can-
opy height, canopy area and AGB) and cocoa
AGB and cocoa yields. We then similarly tested
for significant relationships between litter nutri-
ent contents and soil nutrient contents and ag-
gregation. Model assumptions for normality and
homoscedasticity were checked for all analyses
using both visual and statistical tests; robust
models were chosen to control for the influence
of outliers, using the robustbase (Rousseecuw
et al. 2015) package in R (R Development Core
Team 2014, version 3.1.1).

Results

Shade-tree-effect and species-effect on cocoa biomass
and yield

There was a significant negative effect of shade
trees on mean cocoa AGB, which was on average
decreased by 19% under shade trees compared to
open areas. The magnitude of this “tree effect”
differed significantly between species but was not
significantly different from zero for any of them
(Table 2, Fig. 2a). We observed a slight but sig-
nificant increase in cocoa AGB with increasing
distance from the shade tree trunk (r2=0.11,
p<0.001).

Differences in average yields across all sites
were not statistically significant under shade tree
canopies and open areas and differences between
species were only marginally significant
(Table 2). At the species level, yields under were

significantly lower under durian canopy than un-
der “no canopy”. Yields were marginally lower
under rambutan and marginally higher under
gliricidia canopies, compared to “no canopy”
areas. (Fig. 2b). We found no correlation between
cocoa yields and distance from shade tree trunk
(1?=0.07, p=0.2).

We found no significant relationship between
cocoa AGB and yields (r2<0.01, p=0.7), or be-
tween cocoa AGB and yields and soil fertility
variables (Appendix Table 4). We also found no
significant relationships between variation in shade
tree traits (tree height, lower canopy height, cano-
py area, AGB and litter nutrient contents) and
changes in cocoa AGB or cocoa yields (Appendix
Table 5).

Shade-tree-effect and species-effect on soil total C, N
and P contents and soil moisture

Overall, shade trees had a positive effect on total
soil C concentrations (Table 2), which signifi-
cantly increased by 6% under shade trees rela-
tive to open areas. However, the magnitude of
this “tree effect” significantly differed between
shade tree species. Mean soil C was marginally
higher under gliricidia and significantly higher
under rambutan (3.6 g C kg '+1.1 g C kg
compared to 1.5 g C kg ' or less for all other
species; Fig. 3a).

Similarly, total soil N was significantly in-
creased under shade trees compared to adjacent
open areas by about 4% on average across all
species (Table 2). The magnitude of this “tree
effect” significantly differed between shade tree
species but was not significantly different from
zero for any of the shade tree species. We did
observe that soil N was marginally higher under
rambutan and mango (Fig. 3b). Soil N contents
under shade trees were not correlated with shade
tree litter N contents.

Neither the mean “tree effect” nor the mean “species
effect” on soil P content were statistically significant
(Table 2). Nevertheless, soil P was significantly higher
under jabon canopies than in open areas (Fig. 3¢). Soil P
contents were not correlated with shade tree litter P
contents.

While there was no significant overall effect of
shade trees on soil moisture, variation between

@ Springer
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Table 2 Results from linear mixed effect model analysis examin-
ing the changes in total soil carbon (C), nitrogen (N) and
phosphorus (P), soil aggregation (MWD), soil moisture; and
cocoa above-ground biomass (AGB) and yields (Yield), associated
with shade-tree presence (“tree effect”) and differences between

shade tree species (“species effect”). Abbreviations are: between
group (numerator) degrees of freedom (Num DF); within
group (denominator) degrees of freedom (Den DF); F-value (F);
P value (P)

Response variables Explanatory variables Num df Den df F P
Cocoa Above-Ground Biomass (kg)

Tree 1 84 53 0.02

Species 11 84 22 0.02

Tree x Species 11 84 0.3 0.97
Cocoa Yield (# fresh pods)

Tree 1 84 3.4 0.15

Species 11 84 1.5 0.07

Tree x Species 11 84 0.9 0.56
Total soil C (g kg™")

Tree 1 84 6.3 0.01

Species 11 84 24 0.01

Tree x Species 1 84 0.7 0.72
Total soil N (g kg ")

Tree 1 44 43 0.04

Species 5 44 6.1 <0.001

Tree x Species 5 44 0.8 0.66
Total soil P (g kg ")

Tree 1 84 0.6 0.52

Species 11 84 1.1 0.37

Tree x Species 11 84 0.3 0.99
Mean Weight Diameter (mm)

Tree 1 84 26.0 <0.001

Species 11 84 2.7 0.002

Tree x Species 11 84 7.0 <0.001
Soil Moisture (% H,0)

Tree 1 84 0.3 0.60

Species 11 84 49 0.001

Tree x Species 11 84 0.5 0.81

Bolded P-values indicate statistical significance

species was statistically significant (Table 2). Soil
moisture was significantly increased under langsat
(0.016% H,0+0.009% H,0 compared to 0.006%
H,0 or less for all other species).

Shade-tree-effect and species-effect on soil aggregation
We found a significant positive “tree effect” as
well as a significant “species effect” on MWD,

which was increased by an average of 24% under
shade trees compared to open areas. We also
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found a significant interaction between tree and
species effect on MWD (Table 2). The increase in
MWD under shade trees was significantly differ-
ent from zero under gliricidia, rambutan and du-
rian (Fig. 3d). MWD was positively correlated
with soil C (r*=0.34, p<0.0001) and soil N
(t*=0.21, p<0.0001), and was positively related
with Ca®* contents of shade tree litter (r2:0.27,
p=0.03). We further observed a positive correla-
tion between canopy area and MWD (r*=0.18,
p=0.02).
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Fig. 2 Mean difference in cocoa tree a) yields (No. of pods) and
b) above-ground biomass (AGB) under shade-tree canopy for 11
different shade-tree species intercropped with cocoa. Values under
cocoa-only cultivation (“control” plots) are shown for reference.
Mean differences for each species were calculated as the difference
between mean cocoa AGB and cocoa yields measured under the

An analysis of different soil aggregate size
classes showed a positive “tree effect” as well
as a significant “species effect” on large macro-
aggregate (LM) and microaggregate (m) propor-
tions, and C- and N-contents within LM and m
fractions. Variations in small macroaggregate (sM)
and silt-and-clay (s+c) fractions were not corre-
lated with shade tree presence or shade tree spe-
cies. The mean proportion of LM (F=10.9, p=
0.002) and m (F=7.1, p=0.01) fractions signifi-
cantly increased under shade trees. The increase
in LM proportion under shade tree canopy com-
pared to open areas was significant under
gliricidia and rambutan, and marginally signifi-
cant under durian (Fig. 4a). C-content within
LM fractions (F=12.2, p=0.001) also increased
under shade trees. The increase in C-content
within LM was significant under rambutan and
durian compared to open areas (Fig. 4b). Similar-
ly, N-content within LM (F=10.6, p=0.002) and
m (F=11.3, p=0.002) fractions increased under
shade trees relative to open areas. The increase in
N-content within LM fractions was significant
under gliricidia and rambutan, and marginally
significant under durian, compared to open areas
(Fig. 4c).

b
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canopy of individual shade trees and paired open locations. Bars
represent one standard error of the mean. For each species, aster-
isks (*) indicate a “tree effect” significantly different from zero
(p<0.05); crosses (x) indicate marginal significance of “tree
effect” (p<0.10)

Discussion
Isolated shade trees increase soil fertility

Soil C and N, as well as soil MWD, were signif-
icantly increased under shade trees (Fig. 3). These
results echo previous studies which have found
that isolated trees in acacia agroforests or savanna
ecosystems contribute to increased total C and N
pools in the topsoil (Pandey et al. 2000;
Radwanski and Wickens 1967; Zinke 1962), and
confirm that shade trees can have measurable pos-
itive effects on soil fertility even in perennial
systems. Increased soil C- and N-contents under
shade trees could be linked to increased organic
inputs from litterfall (Beer 1988), buffered micro-
climates under tree canopies and resulting in-
creases in litter decomposition rates (Belsky et al.
1989; Steffan-Dewenter et al. 2007), and increased
root activity (Schroth 1998) under shade tree
canopies.

Increased SOM content and changes in microclimate
conditions can further lead to increased substrate avail-
ability and changes in soil moisture levels. These chang-
es can influence microbial activity and hence SOM
decomposition rates (Bending et al. 2002; Swift et al.
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Fig. 3 Mean difference in soil a) carbon (C), b) nitrogen (N) and
¢) phosphorus (P) content and d) mean weight diameter (MWD) in
the topsoil layer (0—15 cm) under shade-tree canopy for 11 differ-
ent shade tree species and the control species cocoa. Mean differ-
ences were calculated as the differences between mean soil

1979; Zaman and Chang 2004). Soil aggregate forma-
tion is known to be driven by mechanisms related to the
interaction of soil micro- and macro-fauna and plant
roots and exudates (Fonte et al. 2012; Six 2014), as well
as to the overall availability of SOM in the system
(Kong et al. 2005). In our study, the observed increase
in soil aggregate size (indicated by MWD) under tree
canopies therefore may suggest improved long-term
OM storage and increased availability of N and P under
shade trees.

Shade trees negatively affect cocoa growth, but have
limited effects on yields

Our findings also shed some light on the costs and
benefits associated with shade tree inclusion in
cocoa farms. We found that overall, shade trees
had a significant negative effect on the growth of
cocoa trees as cocoa tree AGB decreased by an
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average of 19% under shade canopy compared to
open areas (Fig. 2a). While these results confirm
observations by Blaser et al. (2017) or Koko et al.
(2013) they contrast with those of Isaac et al.
(2007a), who found increased cocoa AGB under
individual shade trees. This discrepancy might be
related to species-specific differences between the
shade trees investigated in the two studies. Simi-
larly to Koko et al. (2013), we found that cocoa
AGB increased with planting distance from shade
trees, confirming that close proximity to shade
trees has a negative effect on cocoa tree growth,
likely due to resource competition.

However, this negative effect on cocoa AGB
did not directly translate to cocoa yields, which
did not significantly decrease under shade trees.
This suggests that in terms of yield productivity,
the positive effects of shade trees on soil fertility
may have outweighed resource competition at our
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study sites. Based on our results, individual shade
trees might thus have less of a direct negative
influence on yields than often assumed, although
the extent to which negative effects do occur are
likely dependent on differences in competition for
light and nutrient resources across individuals and
species.

Existing studies examining relationships be-
tween shade trees and cocoa at the systems scale
document significant negative relationships be-
tween shade tree density and cocoa yields (e.g.
Blaser et al. 2018; Clough et al. 2011; Waldron
et al. 2015), indicating potential negative effects of
high shade-canopy densities. However, no direct
relationship has been shown between increased
shade tree diversity and yields in cocoa agroforests
(Clough et al. 2011; Wartenberg et al. 2017).
While it remains unclear how our results would
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no canopy canopy no canopy anopy no canopy anopy no canopy no canopy canopy no canopy canopy

X Fct

D. zibethinus A. heterophylius
s+C

N . 1§ [ § AP

*

D. zibethinus A. heterophyllus

no canopy canopy no canopy canopy no canopy canopy no canopy canopy no canopy canopy no canopy canopy
* *

X

microaggregates (m; 53-250 um), and free silt and clay (s+c;
<53 um) particles. For each species, asterisks (*) indicate a “tree
effect” significantly different from zero (p <0.05); crosses (x)
indicate marginal significance of “tree effect” (p <0.10). Both
significant and marginally significant effects are indicated for the
LM fraction only

scale up, flexible inclusion of diverse shade trees
at low densities within cocoa plots might be an
effective approach for farmers to minimize trade-
offs, although more research is needed to corrob-
orate this at the systems scale.

Shade tree effects on soil fertility are highly variable
between shade tree species

We observed high variability in the net change in
soil nutrient concentrations and MWD under dif-
ferent shade tree species (Fig. 3), which is con-
sistent with existing literature (Bossuyt et al.
2001; Giardina et al. 2001; Lehmann et al.
2001). Neither canopy architecture (tree height,
canopy height, canopy area), tree size (AGB),
nor litter nutrient contents were correlated with
variation in soil nutrient contents. This is
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consistent with the results of Vivanco and Austin
(2008), who reported that differences in litter
quality and decomposition rates between tree spe-
cies in Argentina did not translate to differences
in SOM concentrations. Our results ultimately
highlight the complexity of plant-soil interactions
and the difficulty of disentangling direct relation-
ships between tree species and soil nutrient cy-
cling mechanisms in farmed landscapes (Vivanco
and Austin 2008).

Our results do, however, provide some in-
sights regarding soil aggregation mechanisms un-
der different tree species. MWD increases, indic-
ative of soil aggregate formation, were maxi-
mized under shade trees with large canopy area
and median-height of 10—15 m, which most like-
ly provide moderate levels of shade compared to
shorter trees or trees with smaller canopy areas.
This then suggests that soil aggregation was
optimized under moderate levels of shade.
Changes in soil temperature and moisture con-
tent are directly related to changes in foliage
density across species (e.g. Isaac et al. 2007a).
Because soil microbes are highly sensitive to
environmental changes (Paul 2014), differences
in microclimate between shade trees with differ-
ent canopy structures most likely affected soil
aggregate formation (Miller and Jastrow 2000;
Tisdall and Oades 1982).

Macroaggregate fractions (> 2000 um) de-
grade faster than microaggregate fractions (53—
250 um) occluded within them. High concentra-
tions of nutrients contained in LM fractions
therefore might be an indicator for increased
aggregate turnover rates. We found that both
MWD and large macroaggregate (LM) propor-
tions were significantly higher (Fig. 4a) under
the canopies of rambutan, which had elevated
litter calcium levels compared to other species
(Table 1). Calcium has been shown to catalyze
the formation of physical bonds and to stimulate
microbial activity (Chan and Heenan 1999; Six
et al. 2004) by altering soil acidity (Reich et al.
2005), and has been recognized as a driver of
soil aggregation and SOM stabilization processes
(e.g. Muneer and Oades 1989). We thus hypoth-
esize that increased litter calcium may have con-
tributed to increased long-term aggregate stabili-
zation under rambutan.
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C- and N-distributions in aggregate fractions
under tree canopies also varied between species.
Under rambutan, gliricidia and durian trees, there
was a significant increase in C- and N-storage in
LM fractions compared to open areas (Fig. 3).
We measured elevated litter CN ratios and high
calcium levels only in rambutan litter (Table 1)
and found that changes in total soil C and N
pools in the whole soil were not reflected in C-
and N-storage-within-aggregate dynamics, except
under rambutan (Figs. 3 & 4). We did not find
increased total N contents under gliricidia. The
high litter quality of gliricidia trees, as indicated
by low CN ratios (Table 1), may have contrib-
uted to increased aggregate turnover rates (e.g.
Six et al. 2001) under gliricidia canopies. Under
gliricidia, increased aggregate turnover rates may
have led to increased short-term, rather than
long-term, N-storage within macroaggregates.
Under rambutan and durian, aggregate formation
and C-stabilization within LM fractions might
also have been related to changes in soil biolog-
ical activity (Naher et al. 2013; Smith et al.
1998), although more data is needed to corrobo-
rate this.

Interactions between shade-tree functional traits
and implications for cocoa productivity

While we found effects of shade trees on cocoa tree
performance and soil fertility, we also found that
the magnitude of these effects differed significantly
between shade tree species. We were not able to
directly link this variation to specific shade tree
traits but recognize that our study was limited by
a lack of data regarding relevant traits such as
shade tree canopy density, rooting depth, root-
associated microbiota and microclimate and light-
levels under shade tree canopies. Documenting
these traits for the species selected in our study,
as well as for other common tropical shade trees,
would further inform their impacts on cocoa growth
and productivity. We found minimal differences in
topsoil soil moisture between species apart from
langsat. Deeper soil moisture measurements, com-
bined with additional information regarding rooting
depths, might further be useful to better understand
below-ground competition dynamics for water re-
sources in cocoa agroforests.
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Nevertheless, we suggest that certain traits
have a more dominant effect than others. For
example, gliricidia trees are often cited as bene-
ficial in agroforestry settings due to their N-
fixing capacity (e.g. Tscharntke et al. 2011).
Our results largely confirmed this, as we found
significantly increased MWD and N contents
within large macroaggregates in soils under
gliricidia (Figs. 3 & 4). While on average, cocoa
AGB was decreased under most shade tree spe-
cies including gliricidia, (Fig. 2a), in contrast to
most other trees gliricidia had a positive effect
on cocoa yields (Fig. 2b). Under gliricidia,
which has a relatively light canopy compared to
other species, it appears that positive effects on
soil N and aggregation may have outweighed
resource competition trade-offs and led to in-
creased cocoa yields.

A comparison of the effect of different species
on cocoa yields showed that durian had the most
negative effect on yields (Fig. 2a). In contrast,
the measured increase in soil aggregation under
durian trees indicated a significant improvement
in soil structure. Similarly, rambutan had a net
negative effect on both cocoa AGB and yields
but a significantly positive effect on soil C and
MWD, indicating a potential for soil fertility
improvement. The individual durian and rambu-
tan trees in the cocoa plots selected for this
study had relatively high AGBs and low canopy
heights (Table 1), indicating relatively dense
canopies — this might have led to reduced light
availability for nearby cocoa trees. Under durian
and rambutan, potential benefits to cocoa trees
from increased soil fertility (Figs. 3 & 4) might
have thus been canceled out by light competi-
tion, although more data is needed to corroborate
this. As we found decreased cocoa yields under
both species, management recommendations
targeting improved cocoa farming practices
would have to address the potential adverse ef-
fects of these two species on productivity. How-
ever, durian and rambutan trees produce fruit
commonly consumed throughout Southeast Asia.
In light of discussions regarding the benefits of
complex agroforests for soil restoration or cli-
mate mitigation activities (Schroth et al. 2015),
the establishment of durian- or rambutan-based
plantations or agroforestry systems might

constitute an interesting alternative to cocoa for
farmers. However, future research would have to
address the optimization of incentive schemes
and access to markets.

Conclusions

In Southeast Sulawesi, shade trees had a positive
net effect on soil fertility but a negative net effect
on cocoa tree growth. However, we found that
cocoa yields were not significantly decreased un-
der shade trees. Shade tree traits such as litter
quality or tree morphology were also found to
have significant effects on aggregate formation
and the stabilization of nutrients in different
aggregate-size classes, confirming the potential
for soil improvements under shade trees. Our
results indicate that shade tree inclusion in peren-
nial cropping systems is a viable approach to
increase the sustainability of cocoa cultivation
systems, particularly when planted at low densi-
ties. While our study provides insights regarding
the 11 selected shade tree species, which are all
commonly found in cocoa agroforests of Sulawe-
si, our findings do not allow to draw strong
conclusions regarding recommendations of specif-
ic species or traits. This highlights the need for
further research to better understand inter-species
interactions in cocoa agroforests and to inform
shade tree planting guidelines based on general
morphology and functional traits — a potentially
important resource for farmers. In the meantime,
we recommend that targeted evaluations of the
costs and benefits associated with local shade tree
species in tropical agroforests could help generate
relevant planting recommendations for farmers in
different regions.
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Appendix

Table 3 Variation in soil properties across individual shade-tree sites. The values displayed are mean values + standard deviations

Species Common No.of  “no canopy” “canopy”
name replicates
Soil C Soil N Soil P MWD Soil C Soil N Soil P MWD
kg (gkgh) (gkgh  (mm) kg (gkgh) (gkgh)  (mm)

1. Theobroma  Cocoa 5 13.0+£0.7 1.9+0.1 020+0.02 091+027 13713 19+02 021+0.04 0.81+0.21
cacao

2. Gliricidia Gliricidia 5 11.7+1.1 16+02 020+£0.04 0.73+0.10 13.3+1.3 1.7+02 0.19+0.02 0.88+0.18
sepium

3. Nephelium Rambutan 5 13.8+£2.6 19+03 024+0.07 1.01+£0.31 174+1.1 2.1+02 023+0.06 1.84+0.46
lappaceum

4. Lansium Langsat 5 13.6+32 1.8+02 0.22+0.05 0.84+0.19 13.4+0.8 1.7+0.1 023+0.05 1.03+0.28
domesticum

5. Durio Durian 5 135£1.0 19+0.1 020+0.03 099+0.21 134+1.7 19+02 021+£0.02 1.34+0.17
zibethinus

6. Artocarpus Jackfruit 5 139+1.7 1.8+02 020+0.02 1.15+0.37 145+1.2 1.8+0.1 023+0.05 1.20+0.32
heterophyllus

7. Neolamarckia Jabon 5 13.0£1.8 1.7+02 020+0.02 NA 133+1.1 1.8+0.2 021+0.03 NA
cadamba

8. Psidium Guava 5 13.0+24 1.7£02 0.21+0.03 NA 142+40 18+0.3 022+0.04 NA
guajava

9. Mangifera Mango 5 120+£1.1 1.6+0.1 022+0.02 NA 132+1.7 1.7£02 0.21+0.03 NA
indica

10. Parkia Petai 3 13.7+1.8 1.7£0.1 0.20+0.02 NA 148+£09 1.7£0.0 0.19+0.02 NA
speciosa

11. Cocos Coconut 5 1214£0.7 1.6+0.1 021+0.03 NA 122+1.1 1.6£0.1 020+0.02 NA
nucifera

12. Gmelina Gmelina 3 13.8+14 19+04 022+0.02 NA 145 £41 24405 022+0.03 NA
arborea

All - 56 13.0+£1.8 1.8+£0.2 021+0.03 095+0.27 13.9+2.1 1.8+£03 0.21+0.04 1.18+0.44

Table 5 Results of linear regression analysis between i) cocoa
AGB and yields and ii) shade-tree (ST) attributes and litter nutrient
contents. Shown are R? values

Cocoa AGB Cocoa Yield

ST Crown Height <0.01 <0.01
ST Lower Canopy Height 0.02 <0.01

Table4 Results of linear regression analysis between i) difference «
in cocoa AGB and yields and ii) changes in soil N- and P-contents ST Canopy Area 0.02 <001
under shade trees, using shade-tree species as a covariate. Shown ST AGB <0.01 <0.01
are R? values ST Litter C <0.01 <0.01
. ST Litter N <0.01 <0.01

Cocoa AGB Cocoa Yield

ST Litter P <0.01 <0.01
Soil N <0.01 <0.01 ST Litter Ca <0.01 <0.01
Soil P <0.01 0.02 ST Litter CN <0.01 <0.01

(%% p<0.001, ** p<0.01, * p<0.05,. p<0.1)

@ Springer
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Fig. 5 Soil carbon (a), nitrogen (b), and phosphorus (¢) contents;
and mean weight diameter (or MWD) (d) in the topsoil layer (0—
15 cm) obtained under shade-tree canopy (under canopy) and in
open areas (no canopy) for 11 different shade-tree species and our

control cocoa. The data is displayed as boxplots with dark hori-
zontal lines representing the mean, the box representing the 25th
and 75th percentiles, the whiskers the 5th and 95th percentiles, and
dots representing outliers
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