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.. Impact of Soil Fauna

Activities of mobile as well as sessile soil fauna can reduce soil heterogeneity.
Mobile soil fauna in search for food move through the soil following existing
void systems, enlarging pore necks where the passage is hampered and/or
creating new channels. They exploit local zones where food is available and
produce excrements on their way. In arable land, food sources are related to the
root systems of the crops, incorporated organic matter and organic matter
deposited at the surface. As soil organisms are generally strongly related to
specific zones where the same moisture and temperature conditions prevail, the
same architecture can develop in whole zones. A characteristic example is a
moder humus zone in a spodosol (Figure 14a), in The Netherlands, which often
occurs below a plaggen epipedon. The organic matter together with the
fine-grained mineral material becomes conversed into shaped organo-mineral
excrements produced by small soil fauna, chiefly microarthropods such as
enchytraeids and collembola. The excrements occur in open or close packed,
individual or slightly welded clusters between the larger mineral grains. Nearly
all fine-grained mineral material is present in the organo-mineral excrements.
Sessile soil fauna create their own channel system which is in use for
prolonged periods. They, however, also move around in search for food, but
retreat into their own channels. These animals deposit their excreta at the
surface or, less often, into old side-branches of their channel system. With time
and presence of enough food homogeneous zones are formed. A characteristic
example of this type is a mull humus in a mollic epipedon (Figure 14b). In a
mull humus the organic material is intimately mixed with the mineral material
forming a clay-humus complex. This type of humus form is produced by
earthworms, who consume organic as well as mineral material. The excreta
form clusters or small aggregates of strongly welded or shapeless material.

2. Impact of Diffusion

Diffusion is driven by, but also reduces concentration gradients. Diffusion is
thus one of the major processes leading to homogeneity of the soil, although
complete uniformity is approached at an infinitely slow rate, and new disruptions
will have taken place before the soil is completely uniform. To get a feeling for
the speed at which such homogenization occurs, Figure 15 shows the time
course of the average concentration of a sphere of soil of 1 cm radius, inside a
second sphere of 20 cm radius (see appendix for equations). At time zero, the
concentration in the inner sphere is 1.0 and in the surrounding sphere 0. When
we take typical values for the diffusion coefficient representing nitrate in a soil
at field capacity, diffusion is so rapid, that the soil will be uniform for all
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Figure 14. Humus forms produced by soil fauna. a. black moder humus; b.
mull humus (magnification a: x 62; b: x 25).

practical purposes within a few days. For K it may be one or a few weeks, but
for phosphate it will ‘take ‘weeks or months, depending on the P adsorption
constant of the soil to reduce the concentration in the inner sphere to 50% of its
original value. The time is scaled with the effective diffusion constant, and a
tenfold reduction in mobility, leads to a tenfold increase in the time required for
a set degree of homogenization. In drier soil conditions, the mobility of nutrients
is reduced. So and Nye (1989) showed that for a tenfold decrease in D* from
its value at field capacity (pF = 2.0) a sandy loam has to dry out until pF 3.3
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Figure 15. Concentration decrease by diffusion from a ‘hot spot’ (initial
concentration 1), consxstmg of an inner sphere of radius 1 cm in a ‘cold’ sphere
(initial concentration 0) of radius 20 cm, with values of the effective diffusion
constant 1, 0.1 and 0.01-0.001 cm? day!, taken to be representative for nitrate,
potassium and phosphate, respectively. Calculations based on equation (3) in the
appendix.

and a silty clay until pF 4.5. Such a decrease in soil water content renders the
diffusion of NO; in a dry soil similar to that of K at field capacity.

' Homogenization of concentration by diffusion also depends on the absolute
size of the ‘hot spot’; in the spherical model the time required for homogeniza-
tion is (approximately) proportional to the second power of the radius. Hot spots
of nitrate of 3.2 cm radius thus will follow the line indicated for K hot spots of
1 cm radius. Heterogeneities at short distances are thus of practical relevance for
solutes with an effective mobility as low as, or lower than that of inorganic
phosphate. The diffusivity of oxygen in water is 10* times slower than that in
free air, but the diffusivity of oxygen in a water saturated soil is still similar to
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that of nitrate. Equilibration of oxygen concentration in a soil with aggregate
sizes of 1 to 3 cm radius is thus a matter of hours to days (weeks), at least in
the absence of oxygen consumption. With a continuing oxygen demand local
differences in oxygen concentration and even local anaerobiosis can persist in
(nearly) water saturated soil. The overriding importance of consumption on
maintaining steep gradients was also shown for glucose diffusion into soil
aggregates by Priesack and Kisser-Priesack (1993).

IV. Consequences of Heterogeneity for Processes and
Resulting Patterns at Higher Levels of Complexity

This section is focused on the upper part of the chain as given in Figure 7. To
what extent does soil structure and the distribution of soil carbon influence
processes at a higher level of organization, such as water and nutrient use
efficiency ‘of agricultural systems? If a 'good’ soil structure is to help in
reducing negative environmental impact of agriculture, how does this work and
how can it be used to the full extent?

Water and nutrient use efficiency of an agricultural system primarily depends
on how well supply and demand are mutually adjusted. As long as demand
exceeds supply, resource use efficiencies are generally high. It is difficult to
achieve a high efficiency with a resource supply which does not limit pro-
ductivity. Yet, highly productive but at the same time efficient agricultural
production systems are needed for the mext century. The ‘efficiency gap’
between well maintained experimental plots and current farmer’s practice
(Whitmore and Van Noordwijk, 1995) is at least partly due to difficulties in
predicting rates of biologically mediated soil processes and to field scale spatial
variability beyond the area exploited by an individual plant. Several of the
components of the demand-supply balance are related to soil structure: root
growth, mineralization, denitrification and leaching all are influenced by soil
structure. To close the ‘efficiency gap’ a better quantitative understanding of
the underlying patterns and processes is needed. In this context we may come
back to the ‘question of whether models can be based on the concept of a
perfectly mixed homogeneous medium responding uniformly to outside
influences or should be based on the recognition of soil as a highly structured,
heterogeneous environment with large zones of little activity and scattered ‘hot
spots’ full of activity. At first sight, the apparent success of many model
descriptions of major soil processes, based on a homogeneous soil concept seems
to indicate that the heterogeneity is more of academic than of practical interest.

The majority of transport models consider soil heterogeneity implicitly rather
than explicitly. Relevant parameters are normally measured on the scale of an
‘elementary soil volume’ which can be thought to be representative. Thus, a
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soil may be described as if it were homogeneous, but with an average gas
diffusivity assigned to it which is based on the macropores, a water diffusivity
dominated by the mesopores, and a by-pass flow description, based on the
continuous macro-voids. The way in which these overall parameters are
influenced by soil structure, and by variations in soil structure due to manage-
ment actions remains obscure in many instances.

Models of nutrient uptake are normally based on assumptions of a regular
root distribution. The consequences for uptake processes of non-regular root
distribution and incomplete root-soil contact imposed on the root architecture by
a structured soil can now be quantified (Van Noordwijk et al., 1993a; Veen et
al., 1992). To-a considerable extent, such effects of soil structure can be
expressed as a reduction factor on the measured total root length and can be
overcome by the plant by making more roots. Such reduction factors can give
an alternative explanation to the reduction factors employed to estimate the 'live’
fraction of a root system, but the two aspects are as yet difficult to separate and
quantify. In many cases, models are used to evaluate the consequences of root
length densities actually found in the soil and do not attempt to predict how root
development depends on soil conditions, as mediated by soil structure.

Mineralization patterns do depend on soil structure. The consequences for
food web_functioning of the restricted accessibility of bacteria in small sized
pores for protozoan predators are a recent focus of attention (Hassink et al.
1993; Wright et al. 1993). Soil food web models (De Ruiter et al., 1994) so far
are remarkably similar to those for aquatic systems, and do not explicitly
consider spatial structure of a soil, and the ‘hot spot’ nature of organic
substrates. With the existing food web models, the measured N mineralization
patterns in field soils can be predicted within a factor-two error range and they
thus form an alternative to the C pool based model approach. Again, their
relative success toes not implicate that soil heterogeneity is not important for the
functioning of the soil food web, as the calculations are based on actually
observed population densities and do not attempt to predict the population
development as such. Some mineralization models based on C pool sizes do
include the concepts of ‘physical protection’ of soil carbon against bacteria and
of bacteria against grazers (Verberne et al., 1990) but the protection factors are
not yet completely operationally defined. Present attempts to do so are largely
confined to soil texture and do not yet attempt to include soil structure. In the
next generation of models, the mobility of soil organisms and their relations with
soil structure may be more fully described. "

Leaching rates critically depend on ‘by-pass flow’ through macropores.
Considerable progress in field measurement of these properties has been made
(Edwards et al., 1993). Despite considerable progress at the single aggregate
level (Leffelaar, 1993), our understanding of denitrification, and its relation with
measurable aspects of soil architecture is still far from comprehensive.
Development of anaerobic sites and denitrification depend on the presence of
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decomposable organic substrates under conditions of slow oxygen replenishment.
Soil structure and soil water content determine the oxygen transport rates, but
the spatial distribution of oxygen demanding bacteria is probably related to the
hot spots of organic substrates.

Using larger amounts of organic inputs is not a simple recipe to obtain a
better soil structure and a more efficient and yet productive type of agriculture.
If they are integrated with other aspects of crop management, however,
biological means of maintaining and improving soil structure can give a real
contribution to overall resource use efficiency. Biological management of soil
structure by earthworm and root channels remains an exciting option (Dexter,
pers. comm.) for extensive land use systems; one should not expect miracles
however and where the soil building has been severely mistreated, e.g. during
deforestation in the tropics, the biological soil architects will take a very long
time to reconstruct anything similar to the original structure.

V. Importance of Heterogeneity for Carbon Retention in Soil

The organic carbon present in the soil is derived from aboveground organic
materials incorporated as part of tillage activities or below ground organic inputs
from primary producers (see part I and Figure 2). The incorporated organic
inputs have a heterogeneous distribution. The method of incorporation
determines the spatial pattern: e.g. inverted soil surfaces deposited by plough
shares (Figure 3), more finely mixed material with other tillage implements. The
same is true for the below ground organic inputs from primary producers, viz.
leaves pulled into wormholes or roots with a distinct distribution pattern in the
soil, whether or not redistributed by tillage activities. This heterogeneous
distribution by itself may not be very important for decomposition rates or its
complement, carbon retention in soil. The same organic material can be
decomposed via different pathways and in different time lapses. Thus it is not
the location as such of organic carbon which matters, but its effects on
accessibility of the organic input for decomposing bacteria and fungi, predators
and water, gasses and solutes. If the accessibility is affected, e.g. because a crop
residue is incorporated in groundmass, decomposition can be very slow, while
residues a few cm away along a crack are quickly fragmented and partly
consumed (Figure 16). The accessibility for incorporated organic matter differs
strongly and cannot be predicted. Those of the original below ground organic
materials, such as roots, exudates and mycorrhizal hyphae are in principle far
more accessible, as their locations are determined by both the root distribution
pattern itself and the root preference for existing void systems.

In more natural arable systems (e.g. in agroforestry), faunal activity is the
major determinant of incorporation of above ground organic inputs. Consider-
able differences in litter layer exist between vegetation types, but also over small
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Figure 16. Difference in accessibility of crop residues in the plowlayer; the crop
residue along the crack is partly consumed and fragmented by enchytraeids; the
residue embedded in the groundmass remains intact (magnification x 2).

distances -within a single forest type. Burghouts (1993) analyzed such patterns
for a Bornean rainforest and concluded that differences in deposition rates rather
than turnover rates were responsible for the apparent differences in carbon
retention on the soil surface. Within a structured soil, however, possibilities for
differences - in turnover rates are substantially larger than on the soil surface.

Primary organic matter is decomposed faster than secondary organic matter
present in excreta. The most decomposable excrements are those of the large
macrofauna such as earthworm excreta. Mesofauna (enchytraeids, mites and
collembola) consume coarser fragments of the incorporated organic material,
sometimes leaving their excrements in the cavity they produced. Excrements can
be conserved in the soils for centuries, in spite of tillage activities, without
microscopic recognizable changes (e.g. Kooistra, 1978). Otherwise excrements
disintegrate slowly forming shapeless organic coatings and bridges between
mineral grains as in moder podsol soils.

VL. Summary and Conclusions

Soil structure has a biological component, the purposely made architectural part,
which is highly variable in quality and quantity, occurs at different scales and
varies throughout the year. The biological impact of belowground communities
and plant roots depends on the different requirements and can be mutually
exclusive, mutually complementary or dependent, completely independent or
mixtures of these. The biological component of soil structure, therefore, is far
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less predictable than the physical part of soil structure dealing with swell/shrink
and freeze/thaw cycles, and the human impact by tillage and management
operations.

Nearly every observable/measurable biotically related soil phenomenon has
a heterogeneous distribution in the soil. Increase and decrease of heterogeneity
can be based on similar processes, but at different time scales, or on different
processes. Recognition of and understanding of the dynamics of these hetero-
geneities appears to be essential for a ‘real’ understanding of what’s going on
in the soil. Yet, for many purposes models which treat soils as (a number of)
black boxes, with average rates assigned to them have been highly successful.
Such models are based on empirical ‘fudge’ factors, which are not always
properly acknowledged in so-called ‘process-based’ models. Progress will be
made when the empirically determined average parameter values for the black
boxes can be explained on the basis of the underlying heterogeneity, the real
actors and the variation in internal heterogeneity between sites. A number of
new concepts and methods is now available for such an excercise.

The heterogeneous distribution by itself is not the main controlling factor in
regard to decomposition rates or carbon retention in soils. Rather, it is the
accessibility (not the location) of the organic input for decomposing bacteria and
fungi, predators, water, gasses and solutes which is of primary importance. In
studying these phenomena, new methods for analyzing and interpreting
distribution patterns of single features across a range of scales are needed,
especially methods to quantify the spatial correlations of patterns and their
significance for turnover of organic inputs in the soil. As some of the products
of turnover (e.g. anaerobically formed gasses such as CH, and N,0, and solutes
such as NO, ) are definitely undesirable when they reach other compartments of
the environment (e.g. atmosphere, groundwater), research on soil structure may
gain new relevance. '
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Appendix
Diffusion out of a 'hot spot’

Consider a spherical ‘hot spot’ of radius R, and concentration C, inside a larger
sphere of radius R, and uniform low concentration C,. For the concentration
C, . a function of radial distance r and time t, the following equation can be
derived from Carslaw and Jaeger (1959):

3

C,,.=C +(C-C) [&»e_z__ Y sin(rea,) e“D'“:rFa] ()
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The function F_, is equal to:

- (1 v(anRt)'z) [sin («,R) -« R, cos(x,R)]
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where the o, are the roots of the equation cot (« R))= 1/(a R)).

For large t the term with the exponential function in equation (1) is approaching
0 and the concentration everywhere in the sphere becomes equal to the weighted
average of the two initial concentrations. By integration the average concentra-
tion in the inner sphere can be derived as:
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Time t and the effective diffusion constant D* only occur as a product, and thus
the solution for solutes with different mobility can be considered as shifts in
time, directly proportional to D",





