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    Abstract     This chapter presents methods to quantify carbon stocks and carbon 
stock changes in biomass of trees in agricultural landscapes. Specifi cally it assesses 
approaches for their applicability to smallholder farms and other tree enterprises in 
agricultural landscapes. Measurement techniques are evaluated across three crite-
ria: accuracy, cost, and scale. We then recommend techniques appropriate for users 
looking to quantify carbon in tree biomass at the whole-farm and landscape scales. 
A basic understanding of the carbon cycle and the concepts of biomass assessment 
is assumed.   

6.1     Introduction 

 Trees and woody  biomass   play an important role in the global carbon cycle. Forest 
biomass accounts for over 45 % of terrestrial carbon stocks, with approximately 
70 % and 30 % contained within the above and belowground biomass, respectively 
(Cairns et al.  1997 ; Mokany et al.  2006 ). Not all trees exist inside forests, however. 
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Trees feature prominently in agricultural landscapes globally. Almost half of all 
agricultural lands maintain at least 10 % tree cover (Zomer et al.  2014 ) (Table  6.1 ). 
Despite widespread distribution, tree outside forests ( TOF  )    are an often neglected 
carbon pool and little information is available on carbon stocks in these systems or 
their carbon sequestration potential (de Foresta et al.  2013 ; Hairiah et al.  2011 ).

   The ubiquity and use of trees in agricultural landscapes is signifi cant for small-
holder farmers’ livelihoods and modifying local climate (van Noordwijk et al.  2014 ), 
but it also contributes to global climate change mitigation (Nair et al.  2009 ,  2010 ). 
Even when planted at low densities, the aggregate carbon accumulation in trees can 
help fi ght  climate change   because of the large spatial extent covered (Verchot et al. 
 2007 ; Zomer et al.  2014 ). Such trees are estimated to accumulate 3–15 Mg ha −1  year −1  
in aboveground biomass alone (Nair et al.  2010 ), a non-trivial amount when com-
pared to other carbon sinks such as soil. Simultaneously, trees diversify diets, reduce 
soil erosion, and expand market opportunities for smallholder farmers (Van 
Noordwijk et al.  2011 ). Thus, trees in agricultural landscapes offer opportunities to 
mitigate climate change and improve smallholder livelihoods (Kumar and Nair  2011 ). 
The synergy between climate adaptation and mitigation through trees in agricultural 
lands is now receiving explicit attention (Duguma et al.  2014 ). 

 Despite the signifi cant advances in assessment methods, quantifying carbon 
stocks and fl uxes at different spatial scale is still challenging. Although National 
Forest Inventories ( NFIs     ) are supposed to provide such guidelines, they are well 
developed only in the Northern hemisphere. Most NFIs also do not include trees 
outside forests (TOF) and until recently TOF have been poorly defi ned (de Foresta 
et al.  2013 ; Baffetta et al.  2011 ). Hence sampling designs that can be consistently 
applied to both forests and TOF are lacking while ideally national biomass esti-
mates should include carbon estimates of both forests and TOF. Most NFIs (except 
Sweden and Canada) do not include explicit TOF categories (de Foresta et al.  2013 ). 

 The dearth of consistent methodology and a new interest to integrate trees in 
farming systems in global  biomass assessments   (de Foresta et al.  2013 ) is catalyzing 
efforts to generate data on biomass and carbon specifi c for trees on farmland. This, 
however, comes with the challenge to rapidly develop and standardize methods for 
biomass assessment, obstacles in the forestry community has been grappling with 
for decades. Forest-based methodologies can be adapted for some applications. 
However, TOF present unique issues. To begin with, tree stands in agricultural 

   Table 6.1    Typical precision for various quantifi cation uses   

 End user  Potential uses  Typical precision 

 National governments  Reporting to the IPCC  Variable 
 Development of National Appropriate 
Mitigation Actions 

 Markets  Carbon trading between governments and 
businesses 

 ±10 to 20 % 

 Development 
organizations 

 Promotion of low emission agricultural 
development 

 Undefi ned 
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landscapes typically show irregular shapes when compared to those in more dense 
forest stands. The geometry of tree stands on farmland is particularly plastic, sensi-
tive to local environmental conditions (Harja et al.  2012 ), and human management 
(Dossa et al.  2007 ; Frank and Eduardo  2003 ).  Tree management   (pruning,  coppicing, 
lopping, etc.) may violate assumptions of the available allometries, which were 
developed based on physiological relationships (e.g., mass and  diameter at breast 
height (DBH)  ) observed in forests and plantations (Kuyah et al.  2012a ). The impact 
of local edaphic conditions on tree growth combined with the diversity of uses and 
agroecological conditions complicates the construction of a coherent database to 
represent carbon and biomass estimation equations (BEMs) for farmland trees. 
The consequence is a scarcity of data and a fragmented understanding of the role 
trees on farms may play in climate and development discussions. 

 With more attention paid to farm forestry, agroforestry, and expansion of the 
agricultural frontier in many countries, quantifi cation of biomass in trees in agricul-
tural landscapes is receiving greater attention. There is a growing interest in the 
assessments of carbon stocks and sequestration for carbon monitoring and reporting 
needs, but also as a way to evaluate agricultural interventions (Thangata and 
Hildebrand  2012 ). In the following sections, we discuss general considerations of 
measurement accuracy, cost, and scale when quantifying and discuss the two pre-
dominant quantifi cation approaches for biomass and carbon in trees on farms.  

6.2     Accuracy, Scale, and Cost 

 Accurate estimates of changes  in   C stocks are required and uncertainties should be 
reduced as much as is practical (IPCC  2003 ). Yet, uncertainty depends strongly on 
scale and the costs of high accuracy plus high spatial resolution must be weighed 
against the benefi ts of farmer incentive schemes that need such information, as 
opposed to cheaper solutions that meet accuracy targets by spatial aggregation, e.g., 
to a 1 km 2  scale (Lusiana et al.  2014 ). Methodological limitations and random as 
well as systematic errors associated with quantifi cation of biomass of trees on farms 
guarantee uncertainties in estimates. A large degree of uncertainty exists in estima-
tions of C stocks and fl uxes at the local, regional, and global scale. Some of the 
uncertainty results from the lack of consensus on defi nitions, inconsistencies in 
methods, and assumptions leading to widely differing results even among similar 
studies (Sileshi  2014 ). These variations are mainly a result of lack of a common 
framework for sampling. Uncertainty in C estimation should be addressed to estab-
lish the reliability of estimates and provide a basis of confi dence for decision- 
making, particularly where comparisons (e.g., with baseline results) are involved. 
Identifi ed uncertainties can be quantifi ed through statistical methods such as error 
propagation (Chave et al.  2004 ). Uncertainties in biomass quantifi cation result from 
six primary sources in the quantifi cation process: (1) the level of detail in the method 
used, (2) the complexities of the systems and landscapes being modeled, (3) sam-
pling error, (4) measurement error, (5) model errors, and (6) the inconsistency in 
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estimating and reporting biomass components (Chave et al.  2004 ; IPCC  2003 ). 
Available biomass and carbon estimates for trees on farms vary considerably and 
associated measures of uncertainty in the estimates (e.g., standard errors and confi -
dence intervals) are often not reported. 

  There is a potential mismatch between the  scale   at which measurements are 
made and the scale at which information is required for policy and programmatic 
development. Different methodologies allow quantifi cation of carbon stocks at 
various spatial and temporal scales, ranging from plot to landscape scale and shorter 
and longer time horizons. Here again, the method used depends on the available 
funds and accuracy required. Field sampling methods destructive (i.e., harvesting 
trees, drying, and weighing biomass) or non-destructive (i.e., use of BEMs) are 
affordable and applicable for only a limited number of sites (Table  6.2 ). Remote 
sensing is practical and effective for mapping aboveground biomass in expansive 
remote areas, e.g., at regional scale. 

   The  cost   of carbon quantifi cation depends on the method chosen, a choice that is 
determined by the scale of measurement and desired level of accuracy. The methods 
presented here vary in their degree of robustness, allowing for trade-offs between 
accuracy, cost, and practical viability for smallholder systems (Table  6.2 ). The key 
is to determine information that can be obtained at relatively low cost but still pro-
duces estimates within an acceptable level of accuracy. Destructive measurements 
are known to be costly in terms of resources, effort, and time, and are not permitted 
for rare or protected species. Modeling with BEMs is therefore an expedient way of 
estimating carbon both from fi eld inventories or remote sensing. Obtaining fi eld 
inventories is expensive, slow, and impractical in large areas. Ground-based mea-
surements of tree diameters are therefore often combined with predictive models to 
estimate carbon stocks in small areas that can be upscaled. The costs on fi eld inven-
tories and analytical methods are greatly infl uenced by the sampling design used 
and the minimum number of measurement required for a particular method. For 
both modeling with BEMs and remote sensing, costs can be greatly reduced and 

    Table 6.2    Comparison of approaches and techniques in terms of scale, cost, and accuracy   

 Approach  Scale  Cost  Accuracy  Uncertainty 

 Destructive sampling  Limited to 
small area 

 Expensive  Most accurate 

 Allometry  Allows 
upscaling 

 Cheap once 
equations are 
developed 

 Relatively 
accurate 

 Dendrochronology  High 
resolution at 
tree level 

 Cheap once 
the lab 
equipment 
exists 

 Very accurate 
if individual 
rings are easy 
to read 

 Missing rings, 
wood anatomy, 
wedging, etc. 

 Remote sensing  Variable 
(high to low 
resolution) 

 High- 
resolution 
data are still 
very 
expensive 

 Relatively 
accurate 
depending on 
the indices of 
method used 

 For low resolution 
there is blended 
information that 
reduce farm-level 
assessment 
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effi ciencies of labor and time achieved by adopting multipurpose sampling sites or 
procedures. For example, the sites could be designed to take measurements for car-
bon quantifi cation, and also provide data for biodiversity analyses or assessment of 
vegetation and soil properties. An example is the Land Health Surveillance 
Framework, designed to cost-effectively enable measurement and monitoring of 
carbon in a given landscape over years (Vågen et al.  2010 ). Regarding the models, 
simple power-law models with DBH alone are less expensive to develop and use 
compared to parameter-rich models. This is because  DBH   measurements can be 
easily obtained at low cost compared to specialized equipment required for height 
or crown area measurements. Remote sensing can greatly reduce the time and cost 
of collecting data over large areas, particularly for highly variable, widely spaced, 
and hard-to-access areas (Wulder et al.  2008 ). However, remote sensing approaches 
such as airplane-mounted LiDAR instruments are still too costly and technically 
demanding. And while remote-sensing instruments can estimate proxies that can 
also be converted into biomass using statistical models; additional expenses will be 
incurred on fi eld data for calibration/validation, which are also prone to errors. This 
is because there is no remote-sensing instrument that can presently measure tree 
carbon stocks directly (Gibbs et al.  2007 ).  

6.3     Quantifi cation of Five Carbon Pools 
of Representative Plots 

 Tree biomass can be estimated using direct (destructive) or indirect (non- destructive) 
approaches (Pearson et al. ( 2005 ) or GOFC-GOLD ( 2011 ) for methods, models, 
and parameters widely used).  Direct methods   require felling of trees and weighing 
the component parts. Destructive sampling provides the best data for building 
BEMs, generating inventory for estimating biomass, and providing requisite infor-
mation for validating indirectly estimated biomass (Brown  1997 ; Gibbs et al.  2007 ). 
By contrast,  indirect methods   (e.g., BEMs and remote sensing) use readily measur-
able proxies, such as DBH, crown area, or vegetation indices that are then converted 
into biomass based on statistical relationships established by destructive sampling 
(Brown  2002 ; Bar Massada et al.  2006 ). Unfortunately, most algorithms and regres-
sions relating remotely sensed data to biomass increase precision, not accuracy. 
Therefore, it is important to make ground measurements to increase the accuracy of 
BEMs and remotely sensed data. 

  Cost   considerations require that estimates of carbon stocks and stock changes 
on farms and landscapes be based on representative samples from land uses and 
covers and measurement of proxy variables rather than quantifying biomass on 
every farm or pixel and destructive sampling of trees, respectively. Indirect mea-
sures and statistical models only approximate biomass with a precision subject to 
the representativeness of the models to local conditions. That latter consideration 
is particularly salient for smallholder situations in tropical developing countries. 
Models have largely been constructed on data not collected in the tropics and little 
in Africa (Hofstad  2005 ; Henry et al.  2011 ) and even fewer data and BEMs are 
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available for trees on farms. Applying equations to data with size range beyond the 
one that was used in building the equations can lead to high levels of bias and poor 
estimates of biomass. Biomass—and carbon—estimates by indirect methods will 
therefore always be inaccurate. Qualitatively, at least, the direct linkage between 
tree architecture, as modifi ed by farm management, and fractal branching models 
that generate allometric equations suggests ways to make adjustments where major 
branches or parts of the crown are missing from trees (Hairiah et al.  2011 ; 
MacFarlane et al.  2014 ). 

 The  cost   and time of destructive measurement make it impractical for most uses. 
Therefore, this discussion focuses on indirect quantifi cation methods. Indirect 
 quantifi cation   of four IPCC identifi ed biomass carbon pools (aboveground biomass, 
belowground biomass, deadwood, and litter) involves a series of steps (1) stratifi ca-
tion/identifi cation of the target areas, (2) measurement of proxies for biomass, (3) 
calculating biomass/carbon (4) scaling to whole-farms and landscapes (Fig.  6.1 ). 
This highlights the need to recognize two aspects to the uncertainty of carbon 
estimation: the fi rst aspect is plot level—how good are measurements of biomass in 
the fi eld? Do they account for belowground biomass, dead biomass, soil carbon, 
hollow trees, and smaller trees e.g., those <10 cm diameter? How good are we at 
converting wood volumes into total aboveground biomass? The second aspect of 
uncertainty is converting plot-level measurements across space, either through 
modeling or with satellite data.

  Fig. 6.1    Mixed-method approach to fi ve-pool carbon estimates for farms and landscapes       
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6.3.1       Selecting Plots 

  Quantifi cation at farm  and   landscape scales requires extrapolation from data 
gathered from relatively small plots to larger areas. Extrapolation is necessary 
because it is prohibitively expensive to measure every tree on every farm or 
throughout the landscape. With stratifi cation, we aim to quantify the biomass and 
carbon at a few representative locations and then use data on the frequency of 
their occurrence to calculate total biomass at larger spatial extents. It is therefore 
critically important that the sample is representative of the larger area and farm/
landscape features of interest and an estimate of the frequency of occurrence of 
the feature of interest is possible (Brown  1997 ). A stratifi ed  random sampling 
approach   can be employed to guide sample selection ranging from remote sensing 
to household surveys. For building BEMs, a randomized pre-sample of trees can 
be generated from an inventory with respect to a stratifi ed diameter class and trees 
for destructive sampling chosen through a blind selection without tree species 
association. For inventories, stratifi cation by topographic features, management 
infl uence, and age classes are likely to produce more homogenous strata from 
which sample units could be selected. Age is essential particularly where lifecycle 
analysis is involved. In rotational plantations this is easy to implement, but in 
many land use systems derived from natural vegetation by selective retention of 
trees (e.g., shea or baobab trees in many savanna systems), regeneration pattern 
need to inform the sample selection. In systems with “internal regeneration,” sim-
ilar to natural forest with a gap renewal cycle, the age of the most frequent tree 
diameter class can be used to reconstruct a time-averaged carbon stock at the land 
use system level (Hairiah et al.  2011 ). We refer you to Chap.   2     of this manual and 
the references therein to determine an appropriate method for stratifying the sam-
ple. The remainder of this discussion assumes the availability of representative 
plots and knowledge of the relative distribution of different features or land use 
classes in the geographic space of interest.   

6.3.2     Measurements of Proxies for Tree Biomass 

  Tree biomass is estimated from ground- based   inventory data, remote sensing, or 
a combination of the two. Researchers and project developers tend to rely on 
BEMs, which calculate tree biomass based on easily measured dimensions based 
on the idea that standard relationships occur such as the diameter to mass or height 
to mass (West  2009 ) or root-to-shoot (Cairns et al.  1997 ; Mokany et al.  2006 ). 
Because of the variations in tree characteristics among ecological conditions, 
particularly in agricultural landscapes, and the need to account for biomass in all 
plant parts, it is ideal to use locally developed equations or develop BEMs at a 
local scale (Henry et al.  2011 ). Where local BEMs are not available, there are two 
other options. First, volume equation and inventory data arising from commercial 

6 Quantifying Tree Biomass Carbon Stocks and Fluxes in Agricultural Landscapes

http://dx.doi.org/10.1007/978-3-319-29794-1_2


126

interest valuing the stock of wood resources in forests may be available in many 
developing countries (Hofstad  2005 ; Henry et al.  2011 ). However, this approach 
provides data primarily on merchantable wood, leaving out components such as 
branches, twigs, and leaves, yet in some species these components constitute a 
signifi cant amount, about 3 %, of the total aboveground biomass (Kuyah et al. 
 2013 ). The second option is to use the pantropical models (e.g., Chave et al. 
 2005 ). However, these are broadly derived, based on a large dataset and stratifi ed 
by region or climatic conditions. The defi nition of climatic regimes is not intuitive 
and direct application of these models could give biased estimates if applied 
across the board, particularly in agricultural landscapes where trees face multiple 
stresses (Kuyah et al.  2012a ; Sileshi  2014 ). 

 BEMs require the measurement of tree dimensions such as DBH, basal area, 
height, or crown dimensions. Presuming measurements are conducted with care, 
accurate biomass estimates are best obtained by measurements of each parameter. 
However, certain measurements (e.g., height) are diffi cult to obtain accurately in 
the fi eld by non-destructive methods and hence including this parameter in models 
may introduce error into the biomass estimates, by a mean of 16 % (Hunter et al. 
 2013 ). Furthermore, complete datasets are in many cases not necessary to provide a 
reasonable estimate of biomass because inclusion of all parameters only moderately 
increases the accuracy of the total estimate. For example, inclusion of DBH alone 
provided an estimate within 1.5 % of the actual biomass measured in an agricultural 
landscape of Western Kenya (Kuyah and Rosenstock in review), which agrees with 
most studies (Cole and Ewel  2006 ; Basuki et al.  2009 ; Bastien-Henri et al.  2010 ). 
Given the complexities and potential errors in measuring other parameters (i.e., dif-
fi cult terrain or dense foliage when measuring height), the need for specialized 
tools (e.g., hypsometer or clinometer for height), or destructive measurements 
(e.g., wood density), the use of DBH alone appears cost-effective and robust for 
most purposes (Sileshi  2014 ). 

 At landscape scales, ground-based inventories are typically too resource- 
intensive to complete. Instead, crown area—which can be measured by remote 
sensing—is increasingly being tested for estimating aboveground biomass (Wulder 
et al.  2008 ; Rasmussen et al.  2011 ; Fig.  6.2 ). Two issues complicate widespread 
application of remote sensing and crown areas. First, crown area is not as strongly 
correlated with biomass as  DBH  . This may be particularly important for trees on 
farms that show irregular growth patterns due to variable environmental conditions 
(e.g., near red/far red light interception, availability of soil nutrients) or manage-
ment by farmers (e.g., limb collection for fi rewood). For example, (Kuyah et al. 
 2012b ) show crown area measurements alone grossly misrepresent standing stocks 
of carbon, by about 20 % relative to diameter estimates. It is therefore important to 
calibrate remotely sensed crown area estimates with fi eld measured DBH to 
improve the accuracy of measurements. Second, remote sensing of crown areas for 
trees outside of forests requires high-resolution imagery to differentiate small 
features such as individual trees on farms. Typically, Quickbird images with sub-m 
resolution are best suited for this task but cost ~15 USD per km. Without suffi cient 
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resolution, it is not possible to identify trees and may lead to underestimation of 
biomass. Unfortunately, the price of the satellite imagery increases in parallel with 
the resolution and the specialized skills necessary to process the imagery limits 
many  applications of this technique outside of the research arena at this time. 
Despite the challenges, crown area allometry is likely the most promising approach 
to transform our ability to capture information on aboveground biomass stocks, 
potentially for relatively low total costs in the future (Gibbs et al.  2007 ; Wulder 
et al.  2008 ).

   Field measurements and remote sensing generate estimates of aboveground bio-
mass. Though most of the carbon in trees is contained in aboveground biomass, a 
signifi cant fraction can be found in the four other major carbon pools: belowground 
biomass, litter, deadwood, and soils. Soil carbon is discussed in Chap.   7     (Saiz and 
Albrech this volume) and thus we restrict this brief discussion to the other three pools. 
For almost all applications, belowground biomass will be estimated by allometric 
relationships based on DBH or prescribed root-to-shoot ratios. We are quite skeptical 
of the accuracy of general root-to-shoot ratios for estimation of belowground biomass 
as the growth patterns are sensitive to water availability and may range from 10:1 in 
moist conditions versus 4:1 in arid conditions (IPCC  2003 ). Recent destructive experi-
ments suggest that DBH may be a better predictor than root-to-shoot ratio for trees on 
farms but again require inventories to establish  DBH  . Global studies show that 
belowground biomass (BG) is isometrically related to aboveground biomass (AG) 
(Hui et al.  2014 ; Cheng and Niklas  2007 ); i.e., BG =  a (AG). If one can correctly 

  Fig. 6.2    Delineation of TOF crowns by remote sensing using sub-meter resolution Quickbird 
imagery (Gumbricht unpublished)       
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estimate ‘ a ’, we believe estimating BG from AG using allometric method may be bet-
ter than using shoot-to-root ratios. 

 Consideration of litter and deadwood deserve unique attention for trees on 
farm. Litter might be assumed to be in equilibrium with growth and thus ignored 
in biomass estimation especially on farmland. Deadwood might also be treated in 
the same way given most will be collected for fi rewood or in slash and burn 
agriculture, fi re will consume most of it. A case can be made that the relative lim-
ited size of these pools justifi es such treatment for most cases, especially when 
considering decadal timescales. In cases when litter and deadwood need to be 
estimated, measurements using small nested plots or an independent sampling 
design will be required. For litter, the information collected is total mass per unit 
area but for dead wood, depending on the size, one can measure total mass or 
estimate volume that can be used for mass calculation if wood density is known 
(Pearson et al.  2005 ,  2007 ).   

6.3.3     Calculating C Stocks and Fluxes 

 Until now, we have been discussing the quantifi cation of biomass stocks in a 
small plot area. Oftentimes, however, researchers and project developers are more 
interested in the change in carbon, accumulation or loss, with various practices or 
land use change. So here we consider methods to quantify rates of change in 
woody biomass. 

    Time-Averaged Carbon Stock for Different Land Uses 

 Carbon stocks  in   trees generally accumulate slowly over time. Often it is therefore 
most appropriate to analyze the changes over multiple years or decadal time scales. 
On longer time scales it is possible to analyze the average change (per annum or a 
given time interval) for the lifecycle of the land use or farming system (see Fig.  6.3 , 
for example). Stock change accounting assesses the magnitude of change carbon 
stored between two or more ecosystems that share a reference state. This approach 
is desirable because it allows a researcher to substitute space for time, overcoming 
the challenges of returning to measure the same location/land use/trees twice. 
Researchers locate farming systems existing in the landscape that have already 
been transformed from other land use systems. Carbon stocks calculated from the 
different systems can then be compared to provide a relative estimate of changes 
over time. Characteristically, the changes are standardized to changes per year. 
This approach assumes that carbon stock changes results from land use change/
management and changes in carbon stocks are linear over the time period exam-
ined. This latter assumption negates the temporal dynamics of carbon. Yet, time 
averaged carbon stock presents a snapshot picture about the relative annual fl ux 
and cumulative impacts.
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  Fig. 6.3    Time-averaged aboveground carbon and total soil carbon (0–20 cm).  Source : Hairiah 
et al. ( 2011 )       

       Annual Changes: Growth Rates, Dendrochronology, Repeated 
Measurements 

  Though rarely quantifi ed, examining  annual changes   in biomass carbon in trees on 
farm is important when calculating whole-farm GHG balances, that is, when calcu-
lating the global warming potential or global warming intensity of the system. 
Unfortunately, the growth rates of tropical tree species are only known for a small 
sample of commercially viable timber species and the remaining knowledge gap 
greatly limits the ability to map or model carbon stock changes. There are typically 
few options to gain information about annual stock changes in the absence of 
published growth rates: repeated measurements,  biomass expansion factors (BEFs)  , 
and dendrochronology. 

 Repeated measurement of the same tree species is an option to create informa-
tion on growth rates or annual changes in carbon stocks. Repeated measurements 
must be cautious to return precisely to the same tree/stand and the same measure-
ment of the tree. Because repeated measurement relies on exact locations to docu-
ment what can sometimes be small changes, this method is sensitive to observational 
and measurement errors as well as anomalies in growth patterns on the tree selected. 
Furthermore, repeated measurements can typically only be performed on a limited 
number of trees. Thus again, tree selection, to account for heterogeneity and mini-
mize sampling artifacts, is critical. Though not without uncertainty, repeated 
 measurement do provide a non-destructive approach to quantify short-term changes 
in carbon stocks. 
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 BEFs are another approach of using exiting stand volume data from previous 
forest studies to assess carbon density. BEF bundles two aspects, a conversion of 
volume to mass and an inclusion of ignored trees foliage, small branches not 
accounted in commercial volume assessment. The BEF is a conversion factor that 
calculates biomass based on traditional commercial volume data (Brown  1997 ). 

 The use of  dendrochronology   is an emerging fi eld of application of tree ring for 
biomass assessment for individual tree growth. The method is based on the forma-
tion of annual rings in many tropical trees in areas with one distinct dry season. 
Often, this seasonality induces cambial dormancy of trees, particularly if these 
belong to deciduous species (Brienen and Zuidema  2005 ). Annual tree rings pro-
vide growth information for the entire life of trees and their analysis has become 
more popular in tropical forest regions over the past decades (Soliz-Gamboa et al. 
 2010 ). It is demonstrated that tree-ring studies is a powerful tool to develop high-
resolution and exactly dated proxies for biomass accumulation over time in indi-
vidual trees (Mbow et al.  2013 ). In addition to annual increment of biomass, 
tree-ring analysis helps characterize climate–growth relationship between tree 
growth and rainfall in certain periods of the year and how this translates into tree 
productivity information that is central to carbon sequestration assessment (Mbow 
et al.  2013 ). Basically the use of such method implies the application of allometric 
models on diameter over bark on individual rings measured during the tree lifetime 
(Gebrekirstos et al.  2008 ). Important information can be collected using tree ring: 
(1) growth rate—average annual diameter increment-of-individual species to recon-
struct long-term growth of trees and estimate productivity of trees; (2) age–diameter 
relationships which are required in carbon projections; (3) limiting factors of tree 
growth such as long time drought or severe fi res.    

6.3.4     Scaling to Whole-Farms and Landscapes 

 The fi nal step involves aggregating the  data   on carbon stocks or stock changes 
into whole-farm and landscape-scale estimates. The precise  scaling methods   
applied somewhat depend on the types of data collected and the equations used. 
However, scaling plot measurements will generally proceed in the following 
steps:

    1.    Land use/cover transition matrix in proportion for each zone by spatial analysis   
   2.    Frequency of each zone by spatial analysis   
   3.    Total area of the target area by spatial analysis (expressed in hectares)   
   4.    Carbon stock of each system component calculated from the plot level measure-

ments, allometric equations, and statistical analysis (expressed in Mg C ha −1 )   
   5.    Changes in the C stock for each transition by multiplying each cell in the 

matrix by the difference in the time-averaged C stock for each transition/con-
version by the conversion factor (depending on plot size; expressed in Mg CO 2  
equivalent ha −1 )   
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   6.    Annual changes in C stock for each transition by dividing changes in C stock by 
the length of the study period (expressed in Mg CO 2  equivalent ha −1 )   

   7.    Total annual emission and total sequestration and net changes of C stock in the 
landscape (expressed in Mg CO 2  equivalent ha −1 )    

  Because the principal scaling approach relies on similarity-based relationships 
(e.g., allometric equations) that are scale invariant, the same steps are equally rele-
vant for whole-farms or landscapes, irrespective of the spatial extent. Furthermore, 
since the results are expressed in CO 2  equivalent ha −1  it is possible to integrate these 
measures with those from other GHG sources and sinks such as soil carbon or trace 
gas emissions from soils.   

6.4     Additional Sources of Information 

 Because of the interest in forest inventories, there are countless sources of infor-
mation available to help appropriately select and apply various techniques. 
Table  6.3  tabulates what we feel are the key sources of information, and links to 
specifi c protocols can be found on the website  (  http://www.samples.ccafs.cgiar.
org/protocol/Biomass    ).  

   Table 6.3    Annotated key sources of information   

 Brown S (1997) Estimating Biomass and Biomass Change of Tropical Forests: a Primer. 
(FAO Forestry Paper—134). Food and Agriculture Organization of the United Nations (FAO), 
Rome, Italy 
   This report describes multiple methods for estimating biomass density, including one of the 

fi rst comprehensive descriptions of methods for destructive biomass estimation. The report 
includes biomass estimates for different tropical countries based on forest type and climate. 
Supplementary tables report wood density for different tree species across tropical Asia, 
America, and Africa 

 West PW (2009) Tree and Forest Measurement. 2nd edition. Springer, Heidelberg, Germany 
   The primary audience for this book is undergraduate forestry students, practicing foresters, 

and landholders. As such, it introduces the techniques of tree and forest measurement with 
particular attention paid to non-destructive (allometric) approaches. This book provides a 
step-by-step description of how to measure trees as well as their component parts and then 
scale to the stand or population 

 One hundred years of tree-ring research in the tropics-a brief history and an outlook to future 
challenges. Dendrochronologia 20:217-231 
   This article describes the history of tree-ring analysis in the tropics. Tropical 

dendrochronology is hotly debated primarily because the consistent intra-annual temperatures 
of tropical systems do not produce the same tree-ring pattern we observe in temperate 
tree-rings. Worbes discusses the progress in and applications of tropical tree-ring research. 
One such application that we would like to highlight is the potential to use tree-rings to 
evaluate individual tree growth and thus track biomass accumulation through time 

(continued)
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   Open Access    This chapter is distributed under the terms of the Creative Commons Attribution 4.0 
International License (  http://creativecommons.org/licenses/by/4.0/    ), which permits use, duplica-
tion, adaptation, distribution and reproduction in any medium or format, as long as you give appro-
priate credit to the original author(s) and the source, a link is provided to the Creative Commons 
license and any changes made are indicated.

The images or other third party material in this chapter are included in the work’s Creative Commons 
license, unless indicated otherwise in the credit line; if such material is not included in the work’s 
Creative Commons license and the respective action is not permitted by statutory regulation, users will 
need to obtain permission from the license holder to duplicate, adapt or reproduce the material.      
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