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Summary A mathematical model is presented for diffusive transport of oxygen inside the root,
for the case that oxygen can enter only through part of the root’s perimeter because the
remainder is blocked by soil-root contact. Without soil-root contact, concentration profiles
inside the root can be shown to converge rapidly to a steady-state solution. For the case of soil-
root contact a steady-state solution is presented. Steady-state solutions have also been obtained
for the presence of a water film, with and without rhizosphere respiration inside the water film.
Results are presented in the form of isoconcentration lines.

Introduction

Recent reviews of the literature'-2:3:%:1% emphasize the complex
nature of anaerobiosis in soils. Poor aeration may cause the accumu-
lation of various gasses and toxi¢ waste products, but depletion of oxy-
gen below critical levels can, however, be considered as a major effect
on plant roots®, except for plants with special structural adaptions to
overcome problems of poor oxygen supply. For practical, agricultural
purpose the question then is what level of oxygen is critical. The con-
centration of oxygen in soil is determined by the supply of oxygen to
the soil and the consumption by the soil biomass and roots plus rhizo-
sphere. Both supply and consumption vary with soil type, water status,
crop, temperature, soil tillage and organic matter inputs. The balance
between supply and consumption has a high spatial heterogeneity and
large temporal variation. Anaerobic spots may occur locally inside large
aggregates in an otherwise well aerated soil. During periods of (partial)
waterlogging after heavy rainfall, the anaerobic zones spread out and
for a brief period a large part of the soil profile may become anaerobic
before the larger pores have drained’. These highly dynamic aspects of
anaerobiosis are hardly open to realistic quantification as so many para-
meters are involved. Somehow the problem has to be split up. A con-
venient way of doing this, is to distinguish ‘macro-’ and ‘micro’ models.
Macromodels generally use average values of or relations between trans-
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port parameters to predict average concentrations at a certain dept.h,
while micromodels compute gradients over short distances in and
around individual roots or aggregates. Macromodels are mainly con-
cerned with the gas phase, while for micromodels oxygen transport in
both gas and water phase is relevant, the water phase (with a diffusion
#ate that is 10* times lower than in air), if present, being a major
obstacle. At the water-air interface the partial pressure of oxygen will
be the same on both sides, providing a link between macro- and micro-
models. Macromodels can cope with temporal fluctuations; micro-
swadely are dominated by details of the geometry of the diffusion
pathway. The pathway for oxygen transport from soil air to all cells of
a root requiring oxygen can be complicated, for instance by the
presence of a water film at the root surface, by the presence of oxygen-
consuming rhizosphere microorganisms and by partial contact of the
root with the soil.

The purpose of our papers is to study the theoretical consequences
of some micromodels of transport of oxygen towards and within a
root. In these models, following and extending earlier work®, we took
into account effects of water film, rhizosphere respiration and of root-
soil contact (Fig. 1).

In part I the models will be developed and the mathematics elabo-
rated, part II will show biologically relevant results and discuss which
model can offer a quantitative explanation for the experimentally
assessed critical soil oxygen level.

The models have been derived under the following simplifying
assumptions:

a. Roots are considered to be cylindrical in shape, to have a uniform
oxygen consumption rate per unit volume for all cells in a cross section
and to have uniform transport characteristics with respect to oxygen
diffusion.

b. No longitudinal transport of oxygen is taken into account.

c. Oxygen consumption is taken to be independent of the oxygen
concentration and considered to proceed at the same rate until oxygen
pressure drops to 0%.

d. Aeration problems are supposed to begin when at any point in the
root the concentration becomes zero.

These assumptions will be discussed in the second part.

Mathematical formulation

As the derivations are given elsewhere in detail!!, it suffices here to
mention the underlying principles without the complete step-by-step
derivation. The object is to calculate the oxygen concentration at any
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point inside a root as a function of the degree of contact between root
and air phase, the thickness of the water film, the root diameter, the
respiration rate and the external concentration of oxygen.

Equation of continuity
Generally the equation of continuity for diffusion and consumption
of oxygen in a region can be given as:
6C

— = pV2C —
5T Dv:C —-Q (1)

where

C is the concentration of oxygen, mg/cm?

T is time, days

D is the diffusion coefficient, cm?/day

V? is the Laplacian operator

Q is the respiration rate of the root tissue, mg/(cm? - day)

U

\\g\\ R
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&

¥ permanently anaerobic spot
I root

{3 aggregate

water film
Fig. 1. Schematic representation of a root growing in an aggregated soil (with macropores and
micropores) at moderate moisture content. Water films are present around soil aggregates and
the root surface. The larger aggregates may contain spots almost permanently anaerobic.
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Notation and insight into the relative importance of the parameters
are facilitated when dimensionless variables and parameter groups are
used, according to the definitions:

¢ = C/C, ‘dimensionless concentration’ 2)
t = DT/R} ‘dimensionless time’ (3)
v*? = R§V? (4)
q = QR3/DC, ‘demand/supply ratio’ (5)

In (2)—(5), C, is the constant concentration at (part of) the interface
of the root and soil air or at the interface of the water film adhering to
the root and solair (in that case the concentration at the root surface is
denoted by Cy), and R, is the radius of the root.

The definition of V*? implies that radial or rectangular coordinates
with the dimension of length are made dimensionless by division by R,.

With the definitions (2)—(5), equation (1) transforms into:

— = V*¢c—q. (6)
5t d
With the types of boundary conditions considered in this paper, sooner
or later a steady state will be reached. Equation (6) will then reduce to:

v*2c—q =0 (7
In the following only two-dimensional problems will be considered
with two types of boundary conditions: a uniform boundary condition,
where the value of the concentration at the complete root circum-
ference is prescribed, and a mixed boundary condition, where the value
of the concentration at part of the circumference is given, and the
gradient of the concentration over the remaining part is taken to be
zero.

Uniform boundary conditions

For uniform boundary conditions it is convenient to express (6) and
(7) in polar coordinates, as due to the uniform boundary and initial
conditions (see following paragraph) no gradients in tangential direc-
tions will occur. Equations (6) and (7) then become, respectively:

§c 1 & b&c¢

— o — R 8
5t  ror or 1 (8)
1d dc

S r—=—q =0 9
rdrrdr q ©)
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where r is the dimensionless radial distance from the root midpoint.
A solution for the transient situation (eq. 8) will only be given for the
simplest boundary condition: the entire circumference of the root is
directly in contact with soil air. This boundary condition is thus given

by: r=1 c¢=1 t>0 (10)

When it is assumed that initially the oxygen concentration in the root
has everywhere the same value, i.e. the value of the concentration at the
root surface, the initial condition is:

t=20 c =1 0<r<1 (1)

The solution of (8) subject to (10) and (11) is given by Carslaw and
Jaeger* (p. 330, eq (24)):

e~ *n® Jo (a,T1)

— o)
1 odJ, (o) (12

c=1-31-r)+2q 5

4 n=
In (12), e, is the n-th positive root of Jo(a) = 0, and Jo and J; are
Bessel functions of the first kind and zeroth and first order, respec-

tively. By taking the limit as t—eo, from (12) the steady-state solution
can be derived:

¢ = 1—%(1—&) (13)

This result could of course also be obtained directly by solving (9)
together with (10). As will be illustrated under the heading Results,
(12) can very soon be approximated by (13).

A steady-state solution has been derived for a somewhat more com-
plicated boundary condition in which oxygen consumption in the water
film is considered. Though in principle for this boundary condition
solutions for the transient situation can be found, we will restrict our-
selves to the steady state situation, because this will be approximated
soon, as can be inferred from (12) and as shown in Fig. 4. When the
root is surrounded by a water film in which, due to presence of micro-
organisms and root exudates, respiration takes place, it is convenient
for the time being to denote the oxygen concentration in the two
regions, viz., the root and the water film, by the symbols C; and C,.
Using (9), thus two differential equations can be formulated:

1 d dec

<1< -—r——gq, =

1 r 1] rdrrdr Qe 0 (14)
1d dg

0<r<1 -—=:%_g =0 (15)
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where q. and q; now are the dimensionless respiration rates in the water
film and the root, respectively, defined from the volumetric respira-
tion rates Q, and Q; and the diffusion coefficients D, and D; as in (5):

_ QeR(z) — QiR%
qde = T ~ QG = ———
Decl DiCl
while
r, =R;/Rg
and
R, = Ry +A

A being the thickness of the water film. The boundary conditions
applying in this situation are:

r=r, ce = 1 (16)
Ce = G (17a)
r =1 dc, _ d_C_i (175)
dr dr
de
dr

in (17b), A is the ratio D;/D,. Condition (17a) ensures continuity of the
concentration and (17b) continuity of the fluxes. Using the same
symbol ¢ for the concentration in the root and the water film, the
solution of the problem can be given by the two equations:

)\ —_—
|<r<r, ¢= 1—(Z—e(r§—r2)—{—q‘2—q°}1n(r—') (19a)
r

0<r<1 c=1_%(]_r2)_%§(r§_l)_{qi qe}lnr

1

(19b)

In the absence of a water film r; = 1, and (19b) reduces to (13).

When the respiration of a root is measured, this usually includes the
respiration in the water film. This respiration then is also attributed to
the root proper. If the measured respiration rate per unit length of root

s A = 7R3Q + m(R? —R})Q,

and this respiration is attributed to the root, the calculated volumetric
respiration rate of the root will be:

A
Q=— =Q+#l —DHQ

R}

Let the ratio of the rhizosphere respiration to the total respiration be
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given by o (0 < a < 1), then

Ae (r% — l)Qe
—X = a = -—Q—_
Likewise:
A 1 Q
A *TQ
So
q = Q-iq = (l—a)q (20a)
Q
AQ. Aaq
e = *q = - 20b
q Q q @ —D (20b)

Substituting (20a) and (20b) in (19a) and (19b) gives:

2 _ .2 2
= 14 Da@ ) rl)+@(1———2°‘rl 1) In (L)
r

< =
(21a)
2 1 — N
0<r<I c=1+%(r2—l)—a2r+( 4)q
q)\( r? ) 1
+— 11— In — 21b
2 -1 nrl (21b)

The minimum concentration is found at the centre of the root, so the
supply of oxygen to the root is just sufficient if the concentration at
this point is zero. The concentration at the midpoint can be found from
(21b) and (using the definition of q) the concentration minimally
required in the soil air to provide all cells with oxygen can be calculated

as.
QRZJ1 (A — Da A
Cp= {22 % 1+ 2
172D, |2 2 n( R,

AV A
A (l +R—) ln(l +R—)
0 0 (22)

Ro
when a = 0, (22) corresponds with equation 2 of Lemon and Wiegand® .

Mixed boundary condition
When part of the root circumference is blocked by a soil aggregate, as
is illustrated in Fig. 1, all oxygen required by the root has to enter
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through the remaining part. The condition for the blocked part can be
given by: &c/ér = 0, and for the rest of the circumference by ¢ = 1,
when the effect of the water film is negligible (see below). For such a
mixed boundary condition again only the steady-state solution shall be
dealt with. In Fig. 2A the situation is depicted. The problem is now to
find a solution of (7) with the conditions:

¢ = 1 overarc AB (23)

)

;S—C = 0 overarc BCA 24)
r

It is convenient here to formulate (7) in rectangular coordinates:

8%¢c  &¢
552 | 5y? q=20 (25)

To find a solution, first (7) is converted into a Laplace equation by
defining a new variable U as:

U= c—%(x2+y2) (26)

This changes (25), (23) and (24) into:

6U 8U
5x?  8y? : @7
q _
U = I—Z = U, overarc AB (28)
sU _ "9 _

— = 2(Up —1) = —F, overarc BCA (29)
or 2

Next the x,y-plane is considered as a complex z-plane where z =
x +iy. The problem can now be stated as follows: find a harmonic
function U(z) for the disk |z] < 1, satisfying (28) and (29). The solution
can be found by a method outlined by Lawrentjew and Schabat® (p.
358). First the disk |z| <1 is mapped onto the upper half plane n =0
in the {-plane, by the mapping function’ :

§ =h@ = —7+ 30

where § = £ + in (see Fig. 2B). Working out (30) produces the relations
between the coordinates in the z- and the ¢-plane:
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2 _ 1= +y?)
£ = (1 +x)? +y? (la) n= (1 +x)* +y? (315)
_l-@+q7) 26(1 + )

(32a) y = (32b)

TR vA 40y £ +(1+n)

From (31a) and (31b) it can be seen that any point z = x + iy on the
circle |z| =4/(x* +y?) = 1 maps into a point on the £-axis of the

11
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Fig. 2A. Schematic representation of a root with part of its surface (arc AB) exposed to soil air
and the other part (arc BCA) blocked by an aggregate. The size of the oxygen ‘window’ is
characterized by the angle ¢.

Fig. 2B. Mapping of the circle in the z-plane of Fig. 2A to the upper half-plane 5 > 0 by the
function § = i(1 —2)/(1 + z). Point A with coordinates (x,, —y,) in the z-plane maps into A*
with coordinates (—¢,, 0) in the t-plane. Likewise, B maps into B!, and C into the point of
infinity.
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z-plane, so the points z, and Z; (see Fig. 2) transform into points &,

and —£, on the &-axis. Referring to Fig. 2A and equation (31a) one

finds: _-?-Yo v _ siny

(I+x)? +v2 1+x, 1+cosy

_ /;_— cos (33)

+ cosy

£o

A harmonic function U(x, y) in the z-plane transforms into a harmonic
function U({, n) in the {-plane by a conformal mapping as given by
(30). The boundary conditions transform into:

U = Ug for¢realand ] < & (34)
8U _ 2F
e _:lforg‘real and [§] > & (35)

Now suppose that U(&, ) is the real part of a function F(¢) = U(¢, n)

+ iV (&, n), analytic in the upper half-plane (n > 0) of the ¢{-plane. Con-
sider the derivative of F:

Fi(§) = F' () = ut,m) +ivg, n)

with u=98U/6¢ and v= 6V/6§ = —8U/8n according to the Cauchy-
Riemann equations. So if one can find a function F;({) =u +iv

analytic for n > 0, the real and imaginary part of which satisfy, respec-
tively: ’

§U
u = g‘;’— = Ofor{realand [§| < &,
_ —8U —2F, >
v = 57 = T for{realand || = &,

then the solution of our problem is given by:
U = Re {f F, (;)d;} (36)

The function F, ({) can be found with the formula of Keldysch-Sedov
(Lawrentjew and Schabat® p. 353), which for our purpose can be given

as:
L =gy (0 v Fi)
dt + + 37
e ve-m o ©7

g = S—:—é

§+&

F, ) =
with
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where it is to be understood that the positive root has to be taken for
> &, and

[ 0 for [t] < &,
V(1) = {—2F,i
ltz 1 It] > &

The constant y, has to be chosen such that U is bounded, and F, (e°) is
the value of F, ({) at the point of infinity. When the above expression
for Y (t) is substituted in the integral of (37), two integrals result,
(omitting the integrands):

-§ "t
+
N
These two integrals can be combined into one by the substitution t =
—t'in {75, yielding:

2F, ““’ 2(5 — Ot . dt
mg(§) 'k 2 =2 (2 + 1IN/ (P —ED)

When the substitution t> — £3 = s? is made, one eventually obtains:

4(¢o — %) {j“ ds e ds } 1
g(¢) o s+ —¢? Jo s +E3+1)1 482

Working this out and substituting the result in (37) yields:

—2F [ — &3 +
F, () = {i _ § Eo} Yo +F, () §+&

+
1+¢2 B+1) V& —§8) §—&
(38)

From (38), by integration, choosing v, = —1A/(¢§ + 1) and Fy (o) =
0 as to keep U bounded, and adding the integration constant Uy, U can
be given:

_ Fo [£+@+1)?)
U=U,+ 1n{——£2+(n_1)2} Fo |

v@§? —53)+§\/(E%+1)‘
2

n -
VG —E8)—tVE + D)
(39)
No attempt was made to work this equation out in terms of real
functions of x and y, except in the one case treated below. When £ =0

(¢ =in), y = 0 as follows from (32b), so using (26) and (32a), the con-
centration on the x-axis can be given as:
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q
=1 —=(1—x2
c 4( X¢)

XV (1 —x)? +53 (1+x)? + (1 —x)\/(gg + 1)
VO=x)7+8 1 +x? —(1—x)(E + 1)

-5,
2

As the concentration must be symmetric with respect to the x-axis (cf.
Fig. 2), it follows that the minimum concentration is to be found some-
where on this axis. By differentiating (40) with respect to x and solving
for the zeros of the resulting equation, the position of the minimum
concentration as a function of the angle can be found!!. As is shown in
Fig. 3, the minimum concentration occurs at x = — 1 for e<25l;aty
= 2.51 its position jumps to x = 0.5 and then gradually moves to x = 0
for ¢ = =, the situation of equation (13).

Mathematically ¢ can attain negative values, but obviously we can
only give an interpretation of positive values or zero.

The root is supposed to be sufficiently supplied with oxygen when
the minimum concentration is greater than or equal to zero. From (40)
it can then be calculated which concentration at the root surface is
minimally required to keep all parts of the root aerobic. If the position
of the minimum within the root is given by x,, and the concentration
at X, is zero, the required concentration is:

)QRZ
Co = 4Do(l_x12n)
QRS (L V= %m) + B+ xm)? — (1 —xm) VI + 1)}
4D % V(1 — %) F B+ %) + (I — %) V(B + 1)
(41)
When ¢ < 2.51, x,, =—1 and the above expression simplifies to:
: QR [VE +D+1
= 4
© = ]"{\/(gg +D—1 “2)

The presence of a water film on the part of the root not blocked by
soil aggregates increases the required oxygen pressure in the soil air. If
as a first approximation it is assumed that transport in the water film
occurs only in a radial direction and effects on isoconcentration lines
within the root can be neglected, the concentration gradient over the
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Fig. 3. The position of the minimum concentration on the x-axis as a function of the angle .

water film necessary to maintain the required flux can be calculated.
From Lemon and Wiegand® (eq. 12) it follows that:

AA A
C,—Co = —1 (l+—). 43
b7 T oap, U TR, (43)
where Co can be calculated with (43) or (42). The required flux A
through the ‘window’ in the root surface is, with a given oxygen
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1 J
05 1.0
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Fig. 4. Oxygen concentration as a function of radial distance from the root centre for different
times (seconds).



228 DE WILLIGEN AND VAN NOORDWIJK

demand. proportional to the size of the window

A = QRl¢

Results

Here only some relevant mathematical features of the solutions will be
shown, a discussion of the biological significance being given in part 11.
Fig. 4 shows the development of the concentration profile in the root
with time (eq. 12). The values for t (0.0046, 0.046 and 0.46) corres-
pond. for normal values of diffusion constant D;, root radius R,.
external concentration C, and respiration rate Q (See part II for a
discussion and justification of the choice of the parameter values) to
1, 10, and 100 seconds, respectively. It appears that within a few
minutes the steady-state situation is attained. Fig. 5 shows the steady-
state concentration in the root and adhering water film, when the latter
acts as a diffusion barrier only and both as barrier and oxygen sink (eq.
19a and 19b). In the case of uniform boundary conditions (eq. 13).

Oxygen concentration,%
21

20 - a=1.0

15

G=0.3
A"-1.43A

Root

Water film

10
<
0

Il i

S I R

2 3
Distance from
root centre

Fig. 5. Oxygen concentration in water film and root. The upper three lines apply to situations
with the same total respiration for root plus rhizosphere (« indicates the fraction of respiration
taking place in the rhizosphere). The lower line has the same root respiration as the « = 0 line,
plus an additional rhizosphere respiration (30% of the root respiration).
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blockmg 0%

Fig. 6. Isoconcentration lines of oxygen in a root when the entire circumference of the root is
exposed to soil air.

isoconcentration lines are obviously circles (see also eq. 12, 19a and b)
as depicted in Fig. 6. This figure serves as reference for Fig. 7A-F
where isoconcentration lines are given for the case of mixed boundary
conditions. The parameter values in Fig. TA—F were chosen so as to

biocking 20%

blocking 25% ¢
<

blocking 50 %

Fig. TA-D.
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blocking 75 %

diocking 85%

Fig. 7A—F. Isoconcentration lines of oxygen in a root when an increasing part of the root
circumference is blocked. A: 15%; B: 20%; C: 25%; D: 50%: E: 75%: F: 85%.

assure that the concentration does not attain negative values in the root.
The percentage of the root perimeter which is blocked (given by
100 (1 — ¢/m)) increases gradually from Fig. 7A—F. It can be seen that
the position of the minimum concentration shifts from somewhere
near the midpoint of the root in A to the epidermis in the blocked part
at B. The form of the isoconcentration lines changes from concentric
circles in figure 6 to almost straight lines in figure 7E and convex
lines in figure 7F.

Acknowledgement Thanks are due to Prof. Dr. A. van de Vooren of the University of
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