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Abstract
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ameter, root strategy, specific root length

If root systems have scale-independent branching rules, the total number of links in the root system can be
predicted from the ratio of the largest and smallest root diameter. In Paper I we presented an algebraic model for a
dicho-syntomous pattern (the simplest form of proportionate branching forming two equal branches at each node)
and a herringbone branching model (the simplest form of determinate branching rules). Here, we present a
recursive computer model and its results to analyze intermediate patterns, derived from allotomous proportionate
branching (with unequal branches). The numerical and algebraic model gave the same results when applied to the

same situation and parameter values.

For practical applications of the relations found, a test is required on whether or not the underlying assumptions
are met. To illustrate such a test, measurements of the branching pattern were made on Mondriaan’s Red Tree

painting. For patterns such as this tree a slight dependency

of the proportionality factor on root diameter and

random variability of several parameters may have to be included.

Introduction

In a fractal branching pattern the same rules govern
branching at each subsequent level. The initial size
(diameter) and the essential branching rules thus con-
tain the information required to construct the whole
pattern. If root branching patterns have fractal charac-
teristics, measurement of the proximal root diameter at
the stem base and the branching rules as observed any-
where in the root system, would be enough to predict
total root length, root diameter distribution and root
length per unit dry weight (specific root length).

An algebraic model was presented by Van Noord-
wijk et al. (1994) (Paper I) to derive the relation
between total root system size and proximal root diam-
eter for two extreme branching patterns: a dichotomous
and a herringbone pattern, representing proportion-

ate and determinate branching patterns, respectively.
The equations show that, to predict total root length
from the proximal root diameter, at least information
is needed on the minimum root diameter, the link
(“internode™) lengths as a function of root diameter
and the proportionality factor between total cross sec-
tional surface areas before and after branching. If this
proportionality factor o differs from 1, the brarching
pattern (topology) affects the relation between total
root length and proximal root diameter. Regardless of
the value of a, further information on the branching
pattern is needed to relate the proximal root diameter
to the length of the longest root or the specific root
length, as it is highest for determinate and proportion-
ate branching rules, respectively. No general algebraic
solution was formulated for intermediate cases, such
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as allotomous proportionate branching with unequal
branches.

‘A nuinérical Tiodel is presented here for various
branching classes, including allotomous proportionate
patterns. The model was used to investigate the shape
of such branching systems and the relation between
proximal root diameter, the number of links, diameter
distribution and the diameter of root tips. Results will
also be presented for the length of the longest root and
for the specific root length (length per unit dry weight)
and related parameters. Finally, a comparison will be
made with the altitude and magnitude parameters, as
defined by Fitter and Stickland (1991, 1992).

For practical applications of the fractal models we
have to test whether two basic assumptions are met:

1) A test whether the decrease in root diameter in a
branched root system can indeed be described with
a constant proportionality factor a. The parame-
ter o should be estimated at various levels of the
branching pattern as the ratio of the squared root
diameters before (1 axis) and after (sum of at least
2 axes) branching. Regression analysis of « -on
the main root diameter can show whether or not a
single value for o can be used and if so, which.

2) For a of approximately 1.0 we need only the prox-
imal root diameter D, the minimum root diameter
in the system Dy, (or the average diameter of root
tips) and the average link length; if link length is
a function of branching order (or root diameter) a
weighted average should be made,

3) For « differing from 1.0 we need other descriptors
of branching, especially the allocation parameter
q which can be estimated from the diameter ratio
of main and branch roots at each branching point,
or from the length of bare root tips (external links)
relative to internal links. An example of a test of
these assumptions for branched systems will be
presented.

Methods
Numerical model

For different root branching patterns, total root length
and other, corresponding parameter values were calcu-
lated, by the use of a recursive computer program (see
appendix). Calculations were based on equation (1) in
Van Noordwijk et al. (1994) (paper I). The notation is
explained in paper L. In addition the following abbre-
viations are used: A, = specific root surface area (root

area per unit root dry weight), D! = actual mean cliam-
eter of external links (terminal root sections with a root
tips), SSRRD = sum of square roots of root diameters
times length.

If Do, Dy;, Dy, ... Dyx indicate the diameter of a
single root before and of k branch roots after the first

branching, respectively, the fractal branching model is
based on:

D2 ar &
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In a “true pipestem” model o = 1.0. Root branching
can proceed until a certain, chosen minimum value of
the root diameter, D,,,, has been reached.

For herringbone branching (H) only the case where
branch roots had a diameter D, was considered. For
dichotomous branching (D), situations with Dy = Dj,
were considered, as well as situations with unequal
partitioning (allotomy): Dj; = q Dyj, withq=2, 3 or 4
(corresponding with angles 3 of 63.4, 71.6 and 75.96°,
respectively). Various values of the proportionality fac-
tor «, were used for dichotomous branching (0.8 < «
< 2.0).

For each branching pattern the number of links (the-
oretical and observable, Van Noordwijk et al., 1994,
Paper 1) was determined. On the assumption that inter-
nal and external link lengths are equal and independent
of diameter, the number of links is directly related to
total root length (XL;). The length of the longest root
was determined for each branching pattern, as well
as root surface area (X L; D;), root volume (X L;
D;?) and SSRRD “sum of square roots of root diame-
ter” (Z(L; D;%3). This SSRRD was included as effec-
tive diffusive transport to two root systems of different
root diameter is approximately the same if their SSR-
RD (rather than their length or surface area) are equal
(De Willigen and Van Noordwijk, 1987; Van Noord-
wijk and Brouwer, 1994). From these primary param-
eters the specific root length (L, = length per unit dry
weight) and specific root surface area (A, = surface
area per unit dry weight) were derived. Dry weight was
taken as 0.1 x volume.

Practical test of model assumptions

To demonstrate a practical method for testing some
of the important model assumptions, an analysis was
made of a reproduction of Piet Mondriaan’s famous
“Red Tree”. For all the large diameter branchings and
a selection of the small diameter ones, the diameters
and link lengths were recorded, as would be done for



a real life aboveground tree or root system. For each
branching we then calculated the apparent cv.

Results
Root branching pattern

Root branching patterns derived by repeated applica-
tion of the diameter? rule (equation 1, appendix 1) for
herringbone-as well as proportionate branching with
proximal diameters 4 and 8 are shown in Figure 1.
Division characteristics are shown in this figure, but
not the root diameters. With herringbone branching
an oblong pattern occurs which may be effective in
exploration of large volumes of soil, whereas with
dichotomous branching the local root length density
is much higher, which may lead to more intensive
exploitation of a soil volume. Allotomous proportion-
ate branching initially forms a main axis (a herringbone
characteristic) and, with increase in proximal diameter
side branches of increasing in order (a dichotomous
characteristic). The allotomous proportionate branch-
ing patterns thus are intermediate between herringbone
and dicho-syntomous branching. The longest root axes
occur with the most unequal proportionate branching
(Dy; : Dj; = 1:4). This is due to the formation of links
with relatively large diameters at each (theoretical or
observable) branching point. Therefore, link forma-
tion can progress longer to form longer axes. Mean-
while, fewer side axes are formed, as their diameter
falls below the minimum diameter at a larger diameter
of the main axis than in the dichotomous case, where
always two links are formed at a branching point. The
branching pattern of the main axis is repeated in the
side axes, as is characteristic for fractal structures.

Number of links

Results of the recursive model (Fig. 2) agree with those
for the algebraic solution (Fig. 4 in Van Noordwijk et
al., 1994, Paper 1) for herringbone (H) and dicho-
syntomous (D) branching patterns, at the same param-
eter values. Figure 2 shows results for a = 1. Figure 3
includes other values of a.

The algebraic solution suggested a continuous
increase of number of links with increasing proximal
root diameter D,; in practice, however, the increase
is discrete (step wise) (Fig. 2 and 3). This effect is
strongest for a syntomous branching pattern because of
the formation of equal branches at all root ends once the
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Fig. 1. Theoretical root patterns for herrin,o;bone branching and pro-
portionate branching, derived from the (diameter)? rule. A) Proximal
diameter = 4 and B) Proximal diameter = 8. Diameter values decline
from the root basis towards the minimum value (Dy = 1), at each
(branch) root tip (not shown in the figures). In the drawings, the
longest axis of a ‘root’ pattern was placed vertically and the side
branches perpendicular to them. Patterns are on scale of notation
(Li = 1), except for the third order branches of Dj; : Diz = 1:2in
B, which are represented shorter for reasons of graphical represen-
tation. Proportionality factor a = 1.

threshold value of D, is reached for the branch roots.
In a dicho-syntomous pattern, the total number of links
doubles for each increment of the proximal diameter
by 2 a Dy, In allotomous proportionate branching pat-
terns, links of different diameter are formed and this
increases the possibility of link formation with increase
of proximal root diameter; the increments in number
of links are thus more gradual.

In Figure 2A the actual mean diameter of root tips,
D!, was used for scaling the X-axis rather than the
nominal minimum root diameter (Dy,, Fig. 2B). In
fact, D!, should be preferred as it is directly observ-
able in real root systems, in contrast to Dy. The shift
from Dy, to DY, reduced the distance between the lines
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Fig. 2. Number of theoretical links (equivalent of total root length for L; = 1) as a function of the proximal root diameter Dy, for various
branching patterns with & = 1.0, calculated with the recursive model. D = dichotomous branching; uP = allotomous (= unequal) proportionate
branching, with D;; : Diz = 1:2,1: 3 and | : 4, respectively; H = herringbone pattern. In A. the actual mean value of the root tip dizmeters

D!, was used for scaling the x-axis; in B. the nominal minimum diameter Dy, was used.
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Fig, 3. Number of theoretical links as a function of proximal root divmeter for dilferent values of the proponticnality factor a, A} Dicholomous

branching, Dy

Dp=1|

for different branching patterns and shifted all lines to
the left, because D/, can be larger than Dy,. In Fig-
ure 2A the lines for herringbone and dicho-syntomous

i: B), C) and D) allotomeus proportionate branching, with D

respectively; the actual mean value of the root end dinmeters, Dy, was used to scale the X-axis

D= 1:2Dy

Dy =

|

1, Dy

“l; 5 8y 3

patterns are on the left (higher number of theoretical
links at same D,) of those for allotomous branching
patterns; in Figure 2B they are found on the right hand
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Fig. 4. Mean value of the actual root tip diameters as a function

Zide. This shift in relative position is caused by the
larger difference between Df,, and D, for syntomous
branching patterns (see next section). As Y-axis we
chose for presenting the number of “theoretical” rather
than “observable” links (compare paper I). In combi-
nation with the assumption of constant link length, the
use of “theoretical” links may lead to a larger “observ-
able” link length for external links in allotomous pat-
terns. For the herringbone and the dicho-syntomous
pattern the number of observable and theoretical links
are equal.

The total number of links (reflecting total root
length) strongly decreases with increase in a, at given
proximal root diameter D, in all proportionate branch-
ing patterns (Fig. 3). With further decrease in o a value
will be reached where one of the branch roots is larger
than the main root before branching, and the branching
will continue without bounds (compare the algebraic
restrictions on « given in paper I). With increasing
inequality of the branches, the effects of a change in «
become more dramatic. In Figure 3 C and D a “wave-
like” increment in the number of theoretical links is
apparent for allotomous branching patterns, especially
for low values of a.

Root tip diameters

With increasing proximal root diameter, the mean
diameter of root tips increases until a new branch can
be formed and the mean end diameter is decreased.
With a dicho-syntomous branching pattern, the mean
root tip diameter is exactly D, when a new branching
level is reached and a saw-tooth pattern is obtained
(Fig. 4A; note that the X-axis is linear, rather than log-
arithmic as in Figs. 2 and 3). In Figure 4A the Y axis
covers the range 1-1.42 (2%5); in Fi gure 4B no values
above 1.05 were found. In the dicho-syntomous pattern
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proximal diameter. A) Purely dichotomous branching, B) Allotomous
proportionate branching, Dj; : Djz = 1 : 3. Proportionality factor e« = 1.

a doubling of the proximal root diameter is needed for
each new branching order, the width of the saw teeth
is increasing by a factor 2 for each step.

With allotomous proportionate branching (Fig. 4B).
a rather chaotic picture emerges, as new opportunities
for branching arise more gradually when the proxi-
mal root diameter increases and links with different
diameters are formed at each branching step. Only in
exceptional cases will the mean root tip diameter be
equal to the nominal Dy, value (if this occurs at all).

Length of longest root (altitude)

Figure 5 shows the length of the longest chain of the-
oretical links in each branching pattern (altitude), as a
function of proximal root diameter, which may be inter-
preted as the length of the longest root. For the herring-
bone pattern, the length of the longest root increases
linearly with increasing squared proximal root diam-
eter (compare equation 30 in Van Noordwijk et al.,
1994; Paper I; the slope of the log-log plot in Fig, 5 is
2). For the dicho-syntomous pattern the length of the
longest root increases proportional to the logarithm of
the proximal root diameter (compare equation 44 in
idem).

At small Dy the allotomous patterns have the great-
est length, when theoretical links are supposed to have
the same length as observable ones. Curves for alloto-
mous proportionate branching are flattening off to par-
allel the line for a syntomous pattern at larger proximal
root diameters, as soon as side branches are formed.
The curves for allotomous proportionate branching
intersect the straight line for herringbone branching
in Figure 5.
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Total root surface area and root volume

Root diameter values are incorporated in calculations
of total root surface area and volume (Fig. 6). In both a
herringbone and a dicho-syntomous branching pattern,
(slightly more than) half of the links are external ones
(compare equation T in Paper 1) and thus have a diam-
eter close to or equal (just after the step wise increment
as shown in Fig. 3) to Dy,. In the herringbone pattern the
main axis only gradually decreases towards Dy,, while
in the dichotomous pattern this decrease is rapid. This
leads to a larger average diameter for the H pattern,
at the same numbers of links as D, and thus to a larg-
er total root surface area and root volume at the same
proximal root diameter. Results for the allotomous pro-
portionate branching patterns are intermediate between
H and D at larger proximal root diameters, but initially
the allotomous proportionate branching leads to larger
root area and root volume, at least if the theoretical
rather than the observable number of links is used for
the calculations.

Specific root length and surface area

In all branching patterns total root volume and thus root
weight (taken to be 0.1 x volume) increases faster than
total root length with increasing proximal root diam-
eter, as the number of links with large root diameters
increases. This means that the specific root length Ly,
specific root surface area Ar, and SSRRD all decrease
with increasing proximal root diameter (Fig. 7) for all
branching patterns. The decrease is faster for the H
pattern (and approximately linear on a log-log plot)

than for D, as the H pattern has a relatively large total
root volume at given proximal root diameter. Results
for Lrw, Arw and SSRRD for allotomous proportion-
ate branching are very close to the ones for a dicho-
syntomous pattern.

Altitude and magnitude

Figure 8 shows the relationship between the number of
observable links of the longest root axis (altitude) and
the number of growing points of the root system (mag-
nitude). The parameters altitude and magnitude were
used here, as defined by Fitter and Stickland (1991,
1992). The deviation from the curve for herringbone
branching by the curves for proportionate branching
indicates the branching of branch roots. This occurs
at larger Dy for a higher inequality in the branching
pattern.

Test of model assumptions

Application of the theoretical results to real root sys-
tems, is only possible when the underlying assump-
tions of the method are (largely) met. Figure 9 shows
results of a test on the constancy of o and link length
within a branched structure. For this particular exam-
ple, the a values were found to have an approximately
normal distribution within the range 0.69 to 1.20, with
an average value of 0.92 and a standard deviation of
0.141. All except one branching displayed were bifur-
cate (Ni = 2), but for the only trifurcated (N = 3) one
the o was not exceptional. The values of o tended to
decrease with decreasing diameter, although a linear
regression line explained only 28% of the variation.
For a more refined modelling of such a tree this depen-
dency may be relevant. The figure also shows that
link length is virtually independent of diameter, but
that it has a considerable variability, with a coefficient
of variability (standard deviation divided by mean) of
0.55.

Discussion

The algebraic model and the recursive computer pro-
gram gave the same results when used for the same: sit-
uations and parameter values. The recursive program
can be used for exploring more complex patterns, such
as the allotomous proportionate branching rules and
can in future be used for introducing (random) variabi-
iity in parameters such as q, o and Dy, and/or deviations
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Fig. 7. Specific root length L (A), specific root (surface) area A, (B) and SSRRD = X (L; x SQRTd;»)/(0.1 X volume) (C) in dependence of
the proximal diameter, for herringbone branching and proportionate branching. Proportionality factor o = 1.

from the scale-independence (e.g. a relation between
« and link diameter).

In general, the allotomous proportional branching
patterns are intermediate between the dicho-syntomous
and herringbone patterns studied algebraically (paper
1) and support the conclusion that the number of links

can be predicted from the proximal root diameter and
the mean root tip diameter, provided that « is (approxi-
mately) 1.0. Whether or not the total number of observ-
able links is a good estimator of total root length should
be checked carefully, however. The allotomous propor-
tionate branching patterns which look like real world
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root systems if the theoretical number of links is equat-
ed with root length, point at a probable difference in
length between ‘external’ and ‘internal’ links.

In descriptive models of a maize root system, Pages
and coworkers (Pages and Aries, 1988; Pages and
Kervella, 1990) put emphasis on the different branch-
ing rules for each order of branching. The degree of
geotropism (or the preferred angle of roots) definitely
depends on the order of branching, but also parameters
such as the length of the bare root tip and the distance
between branch roots. As their model systems look
realistic for maize, careful checking is needed to which
extent fractal models (with scale-invariant rules) can
be used for particular plant species. One complication
which could be relatively easily incorporated would be
to describe link length and « as function of diameter
and of ‘branching order’ (as Pages c.s. do). Further
comparison of the two model approaches is needed.

The example with Mondriaan’s tree shows that the
main underlying assumptions of our models can be
tested relatively easily. We have started on applying
these tests to real tree root systems. These tests, just
like the example given here, show that considerable
variability occurs around the average parameter values
occur, even when scale independence is confirmed,
and that effects of such variability should be studied.
The recursive model used here can be adapted to study
such effects.

Apart from the possible practical applications, the
present study of branching patterns allows some con-
clusions on the possible plant strategies in root branch-
ing patterns. A herringbone pattern has a much longer
main root axis than a dichotomous pattern with the
same proximal root diameter (Fig. 5; to a lesser degree
this' advantage is maintained when compared at the

Red tree, Piet Mondriaan 1908
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Fig. 9. Example of atest of two underlying assumptions of the fractal
model. Relation between branch diameter, link length (circles, left
Y axis) and « parameter (triangles, right Y axis) for the ‘Red Tree’

painted by Piet Mondriaan in 1908 on the basis of an apple t&:

in Winterswijk, which is on display at the Gemeentemuseum, The
Hague, The Netherlands (for copyright reasons the tree cannot be
depited here).

same total root weight) and is the superior pattern if
exploration of new soil layers or zones with increas-
ing vertical or horizontal distance to the tree stem is
required. When a high uptake efficiency (exploitation)
is required, the dichotomous pattern with its relatively
high specific root length (L) is superior. Interest-
ingly, the allotomous proportionate branching patterns
which look like real-world root systems are superior
to or intermediate between H and D in both explo-
ration and exploitation functions. Their longest axig
is even longer than that for a herringbone pattern for
small proximate root diameters (Fig. 5); their specif-
ic root length (Fig. 7) is approximately equal to that
of syntomous patterns. So, even under rigidly deter-
ministic root morphogenesis, the allotomous pattern
of most higher plants appears to be superior to the
more “primitive” syntomous pattern. In real world
plants, the response of branch root development may
actually depend on the local circumstances and the
choice between “exploration” and “exploitation” type
roots does not only depend on a genetic program. The
delayed response of branch root formation from sec-
ondary meristems gives the plant more possibilities to
react to local soil conditions than possible in a purely
dichotomous pattern.
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Appendix: Recursive computer program

Basic form of a Pascal program for root branching
according to the diameter? rule. Abbreviations used: d
= toot diameter, dmin = minimum root diameter, n =
counter, ni = the number of ‘theoretical’ links, a/x and
b/x = partition factors, & = proportionality factor.

program branching (input,output);
var d, dmin, ni: real; i, n: integer;
function branch(d, dmin: real; n: integer): real;
begin
if d<dmin then branch:=0 else
Jor herringbone branching:
branch:=1+-branch(SQRT((d** 2)/c) ~(dmin**),dmin,n+ 1)+
Jor dichotomous branching:
branch:=1 + branch(SQRT((a/x)* (d** )/cr),dmin,n+ 1)
+branch(SQRT((b/x)* (d** 2)/cx),dmin,n+1);
end;
begin
fori:=y to zdo
begin
d:=0; dmin:=1; n:=0; ni:=branch(d, dmin, n); writeln(ni, i);
end;
end.
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