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MASS FLOW AND DIFFUSION oy
CONSTANT
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This paper deals with transport of nu-
trients in soil by mass flow and diffusion
towards plant roots. The root system is
assumed to consist of uniformly distributed
cylindrical vertical parallel roots, all tak-
ing up nutrients at the same constant rate,
Each root thus can be thought to be sur-
rounded by a separate soil cylinder.
Steadyv-state conditions with respect to
flow of water to the root are assumed. Two
situations with respect to the steady-state
water flow are distinguished: one where
replenishment of the water taken up by the
root takes place at the outer boundary of
the soil cylinder, and one where replenish-
ment takes place uniformly over the soil
cvlinder. Analytical solutions to the trans-
port problem are derived. The constant up-
take condition leads to concentration dis-
tributions converging eventually to a
steady-rate solution, where the decrease in
concentration is independent of time. With
these, the period of unconstrained uptake
T., i.e., the period during which transport
in the soil allows the required uptake, is
calculated. It is shown that transport by
mass flow is more important the stronger
the nutrients are adsorbed by the soil. The
solutions for the two situations of steady-
state water flow are shown to differ only
slightly.

Since Barber (1962), it has generally been
accepted that nutrients are transported toward
the plant root by two mechanisms: transport by
mass flow, generated by the uptake of water by
the plant root, and transport by diffusion, when-
ever the concentration in the sojl solution is not
equal to the ratio of the actual rates of nutrient
and water uptake.

Current models on uptake of nutrients by
roots describe uptake as governed principally by
the concentration of the sojl solution (Nye and
Tinker 1977; Barber 1984; Jungk and Claassen
1986). For conditions where nutrient supply to
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the root is not limiting uptake, this approach
may vastly overestimate uptake (Barraclough
1986). There is ample evidence for regulation of
nutrient uptake (Pitman 1976; Loneragan 1978),
especially in the case of the macronutrients N,
P,and K, though regulation is not complete and
instantaneous (Clarkson 1985). The starting
point for our discussions, therefore, is that up-
take is determined by plant demand, i.e. the rate
of dry matter production times required nutrient
content. Uptake by the roots js assumed to be
in accordance with plant demand, as long as
transport in the soil will maintain the concen-
tration at the root surface above a certain lim.
iting concentration. This limiting concentration
is virtually zero for most conditions found in
agricultural practice (De Willigen and Van
Noordwijk, 1987). We will assume that, if plant
demand cannot be met, the root will behave ag
a zero sink, i.e., its uptake rate then equals the
rate at which nutrients arrive at the root surface.
In our description, the root thus either takes up
at the required rate, as long as the soil can
maintain a sufficiently high transport rate of
the nutrient to the root, or it takes up at the
same rate at which the nutrient arrives at its
surface. This approach is similar to that sug-
gested by Olsen and Kemper (1968).

The goal of this paper is twofold: first, to solve"
equations describing transport by mass flow and
diffusion on a microscopic scale around a single
root, for constant sink uptake and second, to
show how the equations derived can be used on
8 macroscopic scale (i.e., in crop growth simu-
lation models). Solutions to the transport equa-
tion for nutrient flow for an idealized distribu-
tion of roots in the soil will be presented and
discussed. The assumed simple distribution and
orientation of roots leads to a simple geometry
of the region for which the equations can be
solved and allows to limit the attention to a
single root and its vicinity. More complex geo-
metries can be considered by reference to this
simplified situation.

Nutrient demand of agricultural crops during
a major part of the growing season can be taken
to be constant (De Willigen and Van Noordwijk
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1987, Van Noordwijk et al. 1990). For the con-
ditions chosen here this also means a constant
uptake rate per root, each root being confined
to an equal volume of soil. The uptake potential
of such a root can be characterized by a char-
acteristic time: the period during which the con-
centration at the root surface exceeds the lim-
iting (in practice zero-) concentration or, to put
it differently, the period during which uptake is
in accordance with plant demand. This charac-
teristic time will in the following be called the
period of unconstrained uptake and will be in-
dicated by the symbol T, (days), or ¢, (dimen-
sionless units). The constant uptake condition
will be treated in this paper. '

TRANSPORT. EQUATION, BOUNDARY AND
INITIAL CONDITIONS

Transport equation B ‘
The ' - governing = equation .for transport
of a nutrient by mass flow and diffusion, sub-

ject to linear adsorption, in a homogeneous soil
of constant water content reads in cylindri-
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cal coordinates:
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where C is the concentration in the soil solution
(mg cm™?), T is time [days], R is radial distance
from root center (cm), K, is the adsorption con-
stant [ml cm™)], © is the soil water content
[ml cm™2}, D is the diffusion coefficient {cm?
day™'], and V is the flux of water towards the
root [em day™!]. It will be assumed here that D
is constant and that a steady-state situation
exists with respect to flux of water, i.e., Vis only
a function of R and not of T.

Geometry of soil/root system and boundary
conditions

Consider a uniformly distributed parallel root
system with root density L,, cm ecm™, and sup-
pose all roots have the same length H cm and
radius R, cm (Table 1 gives a list of symbols).
To each root, therefore, a hexagonal cylinder

TABLE 1
List of symbols
Symbol Name Dimension Dimensionless symbol
T time . d t = DT/R}
T period of unconstrained d t. = DT./R}
. uptake
Tomex maximum T, d b max
radial coordinate cm _ r=R/Ry
R, root radius cm
R, soil cylinder radius cm p=Ry/R,
H root length cm n=H/R,
A’ plant demand for nu- mg-cm~?.d7? w, = —p B/(2¢n)
"trients .
S: initial amount of nu- mg-cm’
. - trient’
? supply/demand param- ¢ = DSJ/(AR,)
- eter
C. - concentration mg-ml™ c=C/C;
C; initial concentration mg-ml™
B=K,+90 buffer capacity ml-em™ 8= (K. +0)/0
E transpiration rate cm-d™t
v flux of water cm.d™? g = E/{2xHDL,(p*— 1)
) v=—E/(2xHDL,)
L, root density cm-em™
K. adsorption constant mi-cm™
e water content ml.cm™"
D diffusion coefficient cm?.d™!
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can be assigned, which can be approximated by
a radial cylinder of height H and radius R,, the
latter given by:
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Steady-state water flux

In earlier discussions of the combined effects
of mass flow and diffusion (Nye and Marriott
1969; Cushman 1980; De Willigen 1981; De Wil-
ligen and Van Noordwijk 1987), it has been
assumed that watef content in the soil cylinder
around a root is constant and that the water
taken up by the root is replenished from outside
the soil cylinder. Such a description may over-
estimate the effects of mass flow. As an alter-
native description, we will consider here also
uniform replenishment within the soil cylinder.

Replenishment from Qutside the Soil Cylinder

The flux of water V at distance R can in this
case be given by (De Willigen and Van Noord-
wijk 1987):

E ER?

V=~ HRL.™ " 2HR

(6)
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and the boundary conditions (3) and (4) become:

_ AL i

R =R, D3R+2HC 0 ©
= aC _RIQE - __A.%

R=Re  Dop+*oupC=imi. ©

Uniform Replenishment in the Soil Cylinder

In macroscopic models of water and/or nu-
trient uptake the soil profile usually is divided
vertically into a number of layers that normally
have a thickness of 10-20 cm each (e.g., Penning
de Vries et al. 1989). Within such a layer no
vertical gradients in water content exist. The
difference between inflow and outflow of water
is supposed to contribute uniformly to the
change of water content in this layer. For such
a layer, a steady-state situation with respect to
radial flow of water is considered here, where
the loss of water attributable to uptake by the
root is continuously replenished. The flux in
such a situation can be given as (De Willigen
and Van Noordwijk 1987):

gaaa Lk 7 -l (b
g Rl oy
ikl i

whan D10 mavhetitaies 0 111 this reslis
g
dR?
(R:*—RY)R.2E + 2DH(R,2— R*) oC
2H(R, - R,>)R 3R
_ R’E
H(R:*—Ro®)

: aC
(K.,+9)a—7-,-D

(11)
c

while the boundary conditions (3) and (4) be-
come: '

aC

R—Rx, '6_1'2'—0 (12)
_ o RE. A

R=Ro  Dp+onr.C=o-mrr. 3

Dimensionless variables

To facilitate notation and to show the inter-
relation between the various parameters and
variables, dimensionless quantities are defined
as given in Table 1. Variables and parameters
with dimension are denoted by capital Roman
letters, dimensionless variables by lower case
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Roman -letters, and dimensionless parameters
by Greek letters.

Replenishment from Qutside tiic »0il Cylinder

Use of dimensionless variables and parame-
ters transforms (7)-(9) into:

d dc 1-2wdc
Ba~at 7 =& (14)
dc  2v
=p, - —— - =
r pv at c=10 (15)
. ) 2
r=1, ~Eiae=-22_. (e

ar - " 2¢n
Uniform Replenishment in the Soil Cylinder

Eng(ions (10);(12) transform into:

dc: % 1+ pu(p® - r?) adc
ot ar 2
dc
= p, — =
’ ar

aC ‘ 2 —_
P a(l = p)e=w, (19)

Initial Condition

B (17

(18)

r=1,

The initial condition (5) transforms into:
t =20, c=1
SOLUTIONS
Replenishment from outside soil cylinder
The solution for (14)-(16) with (20) was de-
rived by De Willigen (1981); it reads:

(' = D+

(20

= p21+? -1 (a)
20 + )P ¢
s s B
[P - | P =)
+ w { +
u 22r+2_1 2 2,+2_1
(o 1) (e ) (21)

P — ¥ w +1)
2w(p**? — 1)? ©

(v + 1)(1 —-p"“)}

@ + O - 1

+ (0 = 20)r'x i‘,";l(&-l‘l-_«:&(_f’_‘i‘"_)

n=1 - op
Fr, anexp| 222t (d)
“wir, ap}jexp! B T

‘2v'r: ‘1r o Jrlan) ()
P pe=l @n

Lo ' _ ,.2t
Fr, ,an)exp( 0]‘3 )

i

where

F~ (r ,—.) = wg:+l(pan)Jv(ran) - Yi(ran)Jﬁl(pa{l)

AT, O ) 5= it e

J2l@n) = J 2alpas) !

and a, is the nth root of Y..i(pa)d,(e) —
Y, (a)d,.y(pa) = 0-J, and Y, are the Bessel
function and modified Bessel function, respec-
tively, of the first kind and order ».

In (21), four parts can be distinguished: the
first part (21a) gives the steady-state solution
when no uptake occurs (w, = 0); the sum of the
first, the second (21b), and the third part (21c)
gives the steady-rate solution in which the con-
centration is a linear function of time. The series
parts (21d and e) account for the transient sit-
uation; these parts vanish in due course as time
occurs in the exponent only with a negative
coefficient.

Uniform replenishment in the soil cylinder

In principle, it should be possible to obtain a
complete solution of (17) subject to (18)-(20) by
employing the Laplace transformation. How-
ever, it turns out to be easier and more illumi-
nating to solve the different parts of the total
solution separately. One can expect the solution
to have the following form (cf Eq. (21)):

c=pr)+ fir)t + g(r) + hir, 8) (22)

where the first function p(r) represents the
steady-state solution when uptake is zero, the
sum of the first, the second f(r)¢, and the third
g(r) function represents the steady-state solu-
tion, and the last function h(r, t) accounts for
transient terms in the solution.

Steady-State Solution

When uptake is zero, a steady-state situation
will eventually develop in which transport by
mass flow to the root is balanced by back diffu-
sion from the root surface, then as stated above:

¢ = p(r) (23)
Substitution of (23) in (16) leads to:
1+u®—r
pr+ e b ap=0

r

The solution in (24) can be found by defining
new variables y and x, respectively, as (Kamke
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1983, page 451, 2.215):

_
x = 2 (25)
y = px, (26)
This transforms (24) into:
xy" ={b-x)y —by=0 (27)

where b = 1 ~ up?/2. The general solution of
(27) is given by (Abramowitz and Stegun 1970):

¥ = AM(b, b, x) + BoU(b, b, x)  (28)

where M(b, b, x) and U(b, b, x) are special cases
of confluent hypergeometric (Kummer) func-
tions, generally defined as (Abramowitz and Ste-
gun 1970):

_ 5 @
Ma, b, 2) = Eo e
where: (@), =ala ¥ I)a+2)... .(a+n~
1), and:
Ula, b, 2) = [ M(,b,2)

gawﬁm1+a-wmw

L M1 +a,2-5, z)]
T(@T(2 — b)

-2

1t follows that:
M, b, x) = e*,
U(b, b, x) = e*I'(1 — b, x) = e*I"(up?, x)

where I'(1 — b, x) is the incomplete gamma
function with parameter (1 — b) and argument
x. The boundary conditions (18) and (19) trans-
form into:

x=xo=g~, y—y =0 (29)
up? .
x=x="pn -y =0 (30)
Using Eq. (29), one finds that B, = 0. The

constant A, cannot be evaluated from condition
(30), since this condition holds for all values of
A,. However, it can be found considering con-
servation of mass. For zero-uptake the total
amount of nutrient in the soil cylinder should
equal the initial amount. The total amount in
dimensionless units is found as:

DE WILLIGEN AND VAN NOORDWIJK

] 4 xy
f2m;rcdr=f 21rqrpdr=2""‘4°f lerdx
1 1 M Xo

- 21[’7]Aotxle(b, b + 1)) xl) - xobM(b: b + 19 xﬂ)‘
bu
The total initial amount is:

2
m(p® — 1) = 7’:’7 (x1 = xo)

so that A, is found as

b(xx ~ Xy)
[x*M(b, b+ 1, %) = x’M(b, b+ 1, x)] (31)

The steady-state solution is thus:

Ac=

p= Aoe‘:t‘ﬂp’/z (32)

A, being given in (31).

- Steady-Rate Solution

Because of the boundary conditions (constant
and zero flux, respectively), in due course a
steady-rate situation will develop in which the
decrease of concentration will have become a
function of distance only; the concentration can
then be given as:

¢ =p(r) + f(r)t + g(r) (33)

Substitution of (33) in (16), (17), and (18) yields,
respectively:

=] L=, (54)
2
PO N
r=p,f’t+g'}=0, (35)

r=L{-f +u(l-p))fit—g' +u(l-p?)g=w,
(36)

As the left-hand side of (34) depends on r only
and not on ¢, it follows that the expression
within brackets [] on the right side has to vanish.
The same applies to the coefficient /* of ¢ in (35)
and to the expression within brackets [] on the
left side of (36). Thus, one obtains two systems
of ordinary differential equations with boundary
conditions, respectively:

2 _
prafXi oDy gpo @
r=1,  —f +ul- Af=0, (38)
r=p, [ =0, (39)
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and,
1 +pu(p® ~ 1
rp L0 ) g =By, (10)
r=p, g =0, (41)
r=1, —g +pl-pdg=w (42)

The solution for f is found similarly to that of
P -
I A {43)

Yhe constant A, cen be found by considering
that the rate of docrense of the totsl nutrient in
the soil eviinder eouals the upiake rats, in di
mensionieas Gnite:

i s : f‘ﬁ a0 Mj’a* .
5 rz:ffrm” rf}iérm x rfdr-«B

On evaluating the integral one eventually finds:

wobi
B b
» AL b4 1 gl

Applying the transformations (250 and (26},
with g instend of p to 140)-(42) and substituling
(480 one ontams

BA;e‘

"+ (b—=x)y —by= (45)
S 2
=5, ¥y =G (46)
i
- - 47
o
Thesolulion o 45 15 [Babister 19671
vom A M B BB b 2
Wi, ~) B"’Z“ (48)

= ‘es{;@ LRI -b D) - W -5 g‘i}

whers Wib o) wdelined pe

Wib, —x) = = % f M

ey
fnz:l n(b)n

From (46) B, can be calculated as:

=) gfg Mbbb 1z  (49)

As before, the constant A, has to be calculated
by using a mass balance. The total amount of
nutrient in the soil cylinder at any moment
should equal the initial amount diminished by
the total amount taken up:

J: 2redr = J: 2rip(r) + f(r)t + g(r)}dr

2wu
(p*~1) + — B

Now: f4 2rp(r)dr = p? = 1, and: [§ 2rf(r)tdr
2w,t/B, thus:

»
f 2rg(r)dr
1
o Ey . #
=~f Tty dx=%§-*'f xle*dx

gggf UL~ b, x)dx

*-»mf VW, —xidx
e
25,

ek Chalw el

By evaluating the integrals of (50), denoted
by I,, I, and I5, one eventually finds:

I = x,°M(b, b + 1, ;) — x°M(b, b + 1, x0)
1= 1]

b
(51)

L= W oMb b+ 1, x)

e p BRIE B ob 1 e (52)

& WL b o d - L - b e

elx Ulh ) - el 2
,{3 =

5
where:
_ o (_l)nxn
Qb, x) = El G+, o +1)+49)

and y¥(n) is the digamma function with argu-
ment n, and v is Euler’s constant. The constant
A, can thus be given as:

ALB B,
Eﬂ_{l I;

where Ay, By, I, I, and Iy are given, respoctively,
in (44} (49}, and (81).(B3) The sieady rate

4= (54)
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solution is thus obtained as:

C=€’I—”’/2{A0+A)t+.42+B2P(1’-b, x) (55)

— Wb —3) %}
2u

Transient Solution

The complete solution is given by (22), and
substitution of (22) in (17) using (24), (37), and
(40) yields:

oh _&°h 1+ ple" = 1) ok

St o r Fram

(56)

while the boundary conditions (17)-(18) and the
initial condition (19) become:

oh
el 0, (57)
- oh 0" —
r=1 P + u(l =p*)h =0, (58)
t =0, -h=1-p—g (59)

Equation (56) can be solved by the method of
separation of variables (Churchill 1972), but the
derivation of the solution will not be discussed
here as our interest is focused on the steady-
rate solution (55).

THE PERIOD OF UNCONSTRAINED UPTAKE

Replenishment from outside the soil cylinder

As long as the concentration at the root sur-
face (r = 1) is greater than zero, transport
through the soil is not limiting uptake, and
uptake may be equal to plant demand. The
period during which this is the case is called the
period of unconstrained uptake T, or ¢, in di-
mensionless symbols. When the steady-rate so-
lution (21a-21c) applies, it follows by setting
¢ = 0 at the root surface where r = 1 such that:

t, = tu.mlx - BG(I’, V) (60)

where t,msx i the maximum period of uncon-
strained uptake, i.e., the total initial amount of
nutrient divided by demand (De Willigen and
Van Noordwijk 1987):

(»* - 1)B

tu,mlx - 2(0
'

(61)
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and where

i 1 gt g™
e+ 1} 1 b Fu

Glp, v) =

pHp” = iy + 1) | (1 — g™ "He + 1))
2elp™*® — 1] £y 4 W - 13

Uniform replenishment in the soil cylinder

When the steady-rate solution (55) applies,
an explicit expression for t, can be derived by
substituting x = x, and ¢ = 0:

tu = tu.mnz

_ [e”x,"ﬂ(b, x,) - eloxobﬂ(b) xO)}
2#{X16M(b, b + 1, xl) had xobM(b, b + 1, xﬂ)}

x;b
+— M(b, b+ 1, x;)
2u
{rd - b) - rQ - b, x,)}

W(l - b, x,) - W(l - b: xO)
x°M(b, b+ 1, 1)) — x"M(b, b + 1, x5)

+ p W —20)

% (62)

When transport is by diffusion alone (p = 0) t,
is given by:

e
b = fmmu =

Bia0 .
T i . it
. { 1 b o 15

22 car b depived diartly Drons (7010100 wit
= 0 0e Willioen and Van Noovdwih 10871

UNCONSTRAINED UPTAKE CAPACITY AND
FRACTIONAL DEPLETION

The total amount taken up in the period ¢, is
the amount of nutrient available for uncon-
strained uptake, i.e., that amount of nutrient
that can be taken up by the crop at the required
rate. This amount is called the unconstrained
uptake capacity. This can be expressed as a
fraction of the available amount. As uptake is
constant in time, it follows that this fractional
depletion can be given as the ratio of ¢, and

umas

lu

qu =7 (64)
AVERAGE CONCENTRATION

The average concentration in the soil at the
end of the period of unconstrained uptake sim-
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ply reads:

tu
c=1——

.

(65)

tu,mux

where ¢, is given by (60), (62); or (63).

- RESULTS AND DISCUSSION

The assumption that water uptake of the root
at any root density equals the demand of the
plant leads to very high fluxes at the root surface
at low root density; eventually as the root den-
sity approaches zero, it leads to infinite flux. In
the calculations care has been taken that the
water flux at the root surface did not exceed a
maximum value, which was set at 0.43 ml cm™?
day™' (De Willigen and Van Noordwijk 1987).

"Figures' 1-3 pertain to the situation where
water is replenished uniformly over the soil cyl-
inder. Figure 1 shows the steady-rate concentra-
tion profile (given by Eq. (55)) and its consti-
tuting components. The steady-state solution
p(r)_is seen to be increasing toward the root
surface because, when uptake is zero, back dif-
fusion from the root just balances the mass flow
toward the root. The function f(r) is negative
for all r, whereas g(r) is increasing from negative
values at low values of r to positive values at
large r. Also, the concentration profile is shown
when replenishment is from outside the soil
cylinder (Eq. 21a-c); there is only a slight dif-
ference with the result of Eq. (55).

Yot Beenduoate sialile nf el saupantiarien
and the funbiinne ol Aieb e and pled Ce U0 TR
interrunted live pives the steadv.rate polution as cal.
cliated with Fo (20e 00 amameter alues ront den.
Bitu T ol can e sdanisiion danstang o 8
availalile mosant of nubrlent = 08 b ba o gniake
tale 4o U Lo Bl a0l gier caniend B oa D08
el et ansth e U0 e dranenieanian oo ey
Al rnut e B D008 o dillusion coellicient 1)
SRt gt
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) o] % % 2 & e4 3 5 a5 & ¥ ¢ 3
Ls{cmicm?)

Fic. 2. Period of uncorstrained uptake 7 1 davs
a8 a funetion of root density L. when tranaport s by
diffusion end mase flow (solld lnes, B (89)) and by
diffusion only linterrunted lines Fa (831 resper.
tively, fur different vaiues of the adserption constant
K, Other parameter valuss as in Fig 1

Figure 2 shows the period of unconstrained
uptake T, in days, as a function of root density,
with evapotranspiration and.adsorption con-
stant as parameters. The increase of T, caused
by mass flow is more important the higher the
adsorption constant (i.e., for a nutrient like
phosphate; cf Robinson 1986), especially at low
values of the root density. When adsorption is
low (i.e., for a nutrient like nitrate), almost all
of the nutrient can be taken up with the rate
required by the crop when transport is by dif-
fusion only, even at low root densities, at least
for the value of the diffusion coefficient em-
ployed here.

Figure 3 displays T\, as a function of evapo-
transpiration, and it can be seen that its value

-extrapolates to the value where transport is by

diffusion only, as it should.

0 0f 02 03 04 05 08 07 08 08 1

. _ | Evap (crvday)

F1G. 3. Period of unconstrained uptake T, in days
as a function of transpiration E in em d7' (Eq. (62)).

The point at E = 0 is calculated with Eq. (64). Other
parameter values as in Fig. 1.
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period of unconstrained uptake for uniform replenish-
ment of water (solid lines) and replenishment from

outside the soil cylinder (interrupted lines).

Crop growth models treat the uptake of the
root system in a macroscopic way, i.e., calculat-
ing uptake from the average concentration and
root length density. When one can assume the
distribution of the concentration around a root
to follow the steady-rate distribution, at least
when T = T,, the average concentration at ¢, is
given by Eq. (65). As long as the average con-
centration in the soil exceeds c,, uptake can
proceed with the required rate. Figure 4 com-
pares the average concentration in the soil cyl-
inder at T, when calculated for uniform replen-
ishment (given by Eq. (62)) and for replenish-
ment from outside the soil cylinder (given by
Eq. (60)). Differences are slight, so it appears to
be justified to use the transport equation (14)
rather than Eq. (17) since it leads to simpler
solutions.

At T = T, a considerable amount of available
nutrients may be left in the soil, especially for
low root densities, high demand, low soil water
content (the diffusion coefficient strongly de-
crease with decreasing soil water content (Bar-
raclough and Tinker 1981)), and/or high adsorp-
tion constant. Uptake of this amount will be
described as a zero-sink process, and this will be
the subject of the following paper.
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