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Table 2 Examples of effects of ‘global change’ on below-ground ecosystem functions mediated by roots

Below-ground ecosystem
functions of roots

Land use change

Below-ground resource
capture for NPP

lower plant diversity
can reduce efficiency walir

Creating and exploiting
spatial heterogeneity

scale changes from
trees to annuals;
simplification
(segregation of
functions) in complex

agro-ecosystems
Buffering against ‘pulses’ -

forest to nonforest
conversion reduces
below-ground C
storage

Storage of C and nutrients

Mobilization of nutrients replacing ‘specialists’
by more ‘generalist’
species

creating and managing
rice paddies,
vegetation change in
boreal bogs and fens

Facilitating gas exchange

Increased temperature

increased demand for

decomposition and
mineralization increase

Increased rainfall
variability

Increased CO,

overall increase in
NPP = > increased
nutrient demand at
equal water demand
via higher WUE

more e '1";".!\'1'1!
dreought-induced

nutrient deficiency

variability of soil
water content will
increase by higher
demand and less
regular supply

- more carbohydrate
available for below-
ground processes
leading to larger C
storage

more carbohydrates
available for
rhizosphere activities

oxygen stress; yet, they are formed as part of normal root
development only in wetland species (mostly monocoty-
ledons), and are secondary adaptations during waterlog-
ging in other species. A drawback of such air spaces may
be a reduction in the ability of the root to overcome
mechanical impedance in compacted soils, but also that
they provide easy access to intruders (Van Noordwijk
et al. 1993). A suberized exodermis may act as a seal
around the aerenchyma and allow oxygen to penetrate
deeper into the root and only leak out around the
unsuberized root tip. Normally, barriers for air transport
exist on the transition of main axes and branch roots. Air
channels (aerenchyma) in the root cortex will not only
supply O, to the root tissue, but will also leak out to the
rhizosphere. Such O, leakage may be functional for the
plant as it can help in detoxifying Fe** forms and
inducing nitrification (Engelaar et al. 1995). Gases such
as CH, and N,O produced on the edge of the rhizosphere
and in bulk soil, under (partial) anaerobic conditions can
reach the atmosphere via these channels. An important
difference exists between the two trace gasses CHy and
N,O in this respect. The likelihood of CHy oxidation in
aerobic surface layers causes a large difference in net

emissions if the CHy can bypass these zones via the
chimneys provided by roots by diffusion in air (Watson
et al. 1997). Oxidation of CHy to CO; in the rhizosphere
is usually only partial. For N;O no comparable effect
exists and effects of roots on net emissions appear to
be small.

The two ecosystems where this root-mediated gas
exchange have received most attention are rice fields and
peatlands in the boreal zone. While net CH, emissions
from rice fields can be reduced by adjusted water manage-
ment (Nugroho et al. 1996) and possible selection of rice
genotypes, the responses of natural vegetation in the
boreal zone are less under human control and yet effects
on root-mediated CH4 emission may be substantial from
a global climate change perspective (Torn & Chapin 1993;
Schimel 1995).

Watanabe et al. (1995) found two-fold differences in
methane emission between rice cultivars; these differ-
ences were not correlated with the amount of roots of
the cultivar, but apparently to differences in functioning of
the air channels and / or effects on rhizosphere organisms.
Gas exchange via root aerenchyma not only depends on
the air-filled root porosity and the size of the air channels,
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but also on their wall properties (De Willigen & Van
Noordwijk 1989). In plants such as rice an effective
‘coating’ (suberized cell layers in the exodermis) prevents
gas exchange with the thizosphere for most of the distance
between atmosphere and root tips. Only where new
branch roots break through the root cortex can leaks
occur, as can be visualized by redox indicator dyes (Van
Noordwijk et al. 1993; Van Noordwijk & Brouwer 1993).
Details of the root architecture are thus important for
this gas exchange function and in crops such differences
can be exploited.

In the boreal zone the fens dominated by monocoty-
ledons such as sedges have the highest CH, emissions.
Sphagnum-dominated bogs on nutrient-poor sites release
little CH,, and thus the transitions between bog and fen
vegetation have consequences for net greenhouse gas
emissions (Nykénen et al. 1995; Bubier 1995). When
peatlands are drained for agriculture (Armentano &
Menge 1986), the practices of drainage, liming, fertiliza-
tion and ploughing all contribute to an increase in peat
decomposition and rapid loss of C (Nykénen et al. 1995).
Organic matter inputs from the crop can never compens-
ate for such losses.

Drainage of natural peatlands will reduce the root-
mediated CH, emissions, but it can induce substantial
increases in emissions of N>O and NO (Lang et al. 1995;
Regina et al. 1996). Emissions are higher on fen sites than
on bogs, and corresponds to differences in nitrification
rates and C:N ratio of the peat (Martikainen et al. 1993;
Regina et al. 1996).

Discussion—research priorities

Examples of global change effects on root mediated
ecosystem functions discussed here are summarized in
Table 2. Contradictory effects may be noted between
changes in temperature and atmospheric CO, concentra-
tions on likely changes in below-ground C storage.
Although it is clear that there are several possible feed-
back loops leading to increased nutrient acquisition under
elevated CO, conditions (Fig. 1), few studies have been
successful in separating the direct effects of more roots
from possible changes in ‘rhizosphere effect per unit
root’. The current concept of the mechanism of root-
induced N mineralization is still open to debate and has
been challenged quantitatively.

In this review we make a plea for combining direct
physiological studies, with the exploration of ‘strategic’
opportunities for genetic adjustment. If more carbohyd-
rates become available, how should the plant use these?
Root functions such as nutrient acquisition, chemical
defense against rhizovores and increased buffering
against ‘pulses’ in water supply are all likely to gain in
importance under a global change scenario.

© 1998 Blackwell Science Ltd., Global Change Biology, 4, 759-772

Priority areas for future research are:
® measurement of root turnover under field conditions
across current (and future) ecosystems;
® inventory of rhizovory and chemical defense in roots
across current ecosystems, in view of likely changes in
soil fauna during ‘biome shifts’;
@ clarification of the interactions between roots, rhizo-
sphere and soil structure in their effects on C and nutrient
storage and mobilization;
@ limits to the ecophysiological tolerance mechanisms
on trees and other plants with long life cycles, where
genotypic adaptation may be too slow to deal with
global change;
® effects of discoupling ecosystems during biome shifts
on specialized root-rhizosphere interactions, both favour-
able ones (mycorrhiza, nodulation) and detrimental
(thizovory).
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