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Abstract

Empirical allometric scaling equations (Y = aDb) for tree biomass on the basis of stem diameter D are often used
in forest inventories and for assessment of carbon and nutrient stocks in vegetation. When shifting from plantation
forestry to mixed forestry or multi-species agroforestry systems, however, short-cuts to the empirical approach for
establishing such equations are desirable. Fractal branchin& models provide a transparent scheme for deriving
tree-specific scaling rules (especially, the b parameter) on the basis of easily observable, non-destructive methods. The
relation between link (section of stem or branch between two branching points) length and link diameter has a direct
influence on the b parameter of the allometric equation in the range 2-3.5, providing substantial variation around the
claims of a universal value of 8/3. Apart from the total tree biomass, the models can provide rules for total leaf area;
relative allocation of current growth to leaves, branches or stem. The power of the allometric scaling relation (b)
necessarily has the same value, for a given tree, for all properties that are dominated by the endpoints of the
branching process, and that are thus 'additive'. Below ground, similar descriptions hold for individual root axes,
where the proximal root diameter can be used for predicting total length or biomass of all its branches. Sampling
error was analyzed to derive rules for the number of branching points that should be observed for reliable estimates
of the fractal branching parameters. For the inherent parameter variability that was chosen as default setting a
minimum number of 50 branching points should be observed. A spreadsheet model (functional branch analysis, FBA)
is made available through the WWW that allows users to derive results for new parameter combinations and/or seek
new applications. @ 2002 Elsevier Science B. V. All rights reserved.
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1. 

Introduction

Trees cover a broader range of scale in their
size than any other organism (Thomas, 2000) and
the concept 'tree' needs a scalar before any mean-
ingful statements about biomass, nutrient stocks
or uptake, water use, carbon sequestration, pro-
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ductivity or any other functional ecological prop-
erty can be made. Foresters have long term expe-
rience in scaling trees on the basis of stem
diameter at a specified height above the ground
(Brown, 1997), but their empirical rules need re-
calibration for each tree species and stand density,
and can not be easily applied in mixed species
forests or in situations where trees grow in more
open conditions rather than in a closed stand
(Brown et al., 1995; Ketterings et al., 2001). When
comparisons include several orders of magnitude,
simple scaling rules may give the impression that
all trees (West et al., 1999) or even all forests
(Enquist and Niklas, 2001) of the world are be-
having in the same way and can be captured by a
single allometric scaling rule. If the target is an
answer of the right order of magnitude, we may
indeed use a generic scaling rule with a power of
8/3 or 2.67. If we care about errors of a factor 3,
however, a method that predicts the power for
scaling relations for each tree species (or even
individual tree...) is relevant. Thus, the need re-
mains for achieving a better understanding of the
empirical scaling rules for trees and, ideally, a
scheme that allows simple observations of tree
shape to be translated into reasonable estimates of
the scaling rules.

Trees can not have any form-there are clear
constraints in 'designing' trees, as all parts must
be connected to ensure transport, it must meet
minimum mechanical stability and it should be
able to grow, i.e. all steps between its current
form and a start (usually from a seed) must have
been possible as well. Beyond these minimum
requirements, there are considerations of resource
capture and resource use efficiency, which proba-
bly lead to differences in 'fitness' of different
shapes (Niklas, 1994).

We can explore the apparent logic of real world
trees and use non-destructively observable proper-
ties to reconstruct allometric equations-this is
what we do in 'functional branch analysis' or
FBA.

Aboveground trees, root systems, rivers and
road networks share common properties, which
have gradually been recognized on the basis of
'fractal' analysis (Mandelbrot, 1983), although
some of the concepts date back to Leonardo da

Vinci. Fractal properties can emerge if a relatively
simple set of rules is applied consistently across a
range of scales, e.g. stating that the diameters
after a branching point are a certain proportion
of the diameter before branching. If such rules are
applied repeatedly, a form can be constructed
with remarkable similarity to a tree or river sys-
tem. Different reasons may be given for such a
rule, for example a constant total transport re-
quirement before and after the branching point,
or the need for mechanical stability which re-
quires each branch to be designed to carry its
share of the total weight load (Niklas, 1992).

Fractal or self-repeating branching models are
essentially based on assumptions of 'self-similar-
ity' across scales: this means that a picture of a
branching point looks the same, whether it is
taken from the first or last branching point of a
tree, relative to the diameter of the branches. This
suggests a simple test: measure the diameter of
branches before and after a branching point and
test in regression analysis whether or not the
derived parameters depend on current diameter.

The objectives of our research were to develop
a procedure for deriving allometric equations for
biomass and other properties of trees on the basis
of parameters that can be measured non-destruc-
tively, and in future may be derived by visual
estimation on individual trees in mixed stands. In
developing this procedure we need to know,
which parameters have major impact on the final
result, and we need guidelines for the number of
replicate observations needed to derive the input
parameters for the model, for the type of variabil-
ity to be expected in real trees.

The questions considered in this paper are:
.can we design a consistent and transparent

system for describing trees in terms of branch-
ing properties and relate this to total size
properties,

.can allometric equations for relating total tree
size to initial stem diameter be predicted from
properties of the branching system;

.which properties of the branching system have
a major impact on the allometric equations and
which a minor one (sensitivity analysis);

.how many observations will be required in
practical applications to reduce uncertainty to
an acceptable level?
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.can we relate the fractal dimension of various L(D) = Lm
( l + r(~ )'

properties of a tree (e.g. leaf area, biomass) to DUlin
each other, for a given branching pattern? Can
we identify scaling rules for different properties
of the same set of trees from characteristics of
these properties?

.can we relate a property such as 'specific root
length' to the diameter of proximal roots?

43

(2)

For fractal (scale-independent) models to apply,
the parameters p and q should be independent of
current diameter D. Subsequent work on tree root
systems, as well as, aboveground trees (Van No-
ordwijk and Purnomosidhi, 1995) has shown that
this assumption of independence may be used as
first approximation for a substantial range of
diameters, but at small diameters the average ~
may increase, although the scatter in calculated
values from observations is often large. If a
(weak) dependence of p or q on diameter is found,
the branching pattern can still be reconstructed by
repeated applications of the same set of rules, but
the program needs some modification.

2. Methods

2.1. Basic fractal branching rules

2.2. 

Rules for end-structures

The basic model can be extended by providing
rules for 'end structures' such as leaves or fine
roots (of a diameter less than DmiJ, as a function
of current diameter. In the simplest form we need
two parameters:

lend describes the number of endstructures per
unit link length, and
Dendstr, max indicates the maximum diameter that
still carries endstructures.

2.3. 

Fractal branching model

With these basic rules, a founding link of di-
ameter Do can be split into links that can be put
in a 'parental queue' and be subsequently split, as
long as more than 1 of their offspring has a
diameter exceeding the minimum diameter Dmin'
In the flowchart (Fig. 2), a central concept is that
of a 'parental queue' if links that have yet to be
'split' to derive their offspring. Without a mini-
mum diameter for links, this process would be
infinite, as each branching event adds more links
to the parental queue than it removed. But with a
minimum diameter (DmiJ rule, splits in rootswith:

Fractal branching models repeatedly apply the
same equations to derive subsequent orders of the
branching process. For practical applications, a
rule is added for stopping when a certain mini-
mum size is reached. The rules can refer to the
diameter, length and/or orientation of the next
order of branches. Van Noordwijk et al. (1994)
and Spek and Van Noordwijk (1994) applied rules
that are primarily based on the diameter to simu-
late (tree) root systems. Five parameters (n, p, q,
Lm and r) are needed in this approach (Fig. 1):

n = number of branches into which the current
link (section of stem or branch between two
branching points) splits at the following
branching point; n ;;::: 2
p = D~/(~JDii I,), describes the change in
diameter from link order i to its n derivative
links of order i + 1 and hence cross-sectional
area (cssa) of the stem ( this parameter was
earlier referred to as cx);
,q=Di~l, 1/(Di~l, I+Di~l, 2), for n=2 and
Dl+ I, I> Di+ I, 2 (0,5 < q ~ 1) to describe the
relative equity among the branches. With these
definitions we obtain for n = 2):

Di+ 1 1 = Di ~, ~p

Hl-q)
Di+I,2=Di (1)

p

Lm is the length of a link of minimum diameter,
and r is the relative increment in link length per
unit relative increment in diameter, hence:
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Fig. 1. Elements of a 'functional branching analysis' (FBA)scheme, which can be applied for above- as well as belowground parts
of trees; combinations of the various parameters-either visually assessed or measured-can be used to predict total size (weight,
surface area, length, height, lateral extent) and the allometric scaling equations between these.
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Fig. 2. Flowchart of the FBA module, implemented in a spreadsheet model available on ICRAF's web site.
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of properties of the tree (or root system) as a
whole can be related to Do, for example by fitting
an allometric equation of the type Y = aDb to the
data. In a spreadsheet model (available via
www.icraf.cgiar.orgjseajAgroModelsj
WaNuICASjindex.htm), the relations between the
input parameters n, p, q, Lm and r and the output
parameters a and b can be explored, for length,
surface area and volume (or weight) of the tree.

3. 

Results
Fig. 3. Example of an allometric relation generated by the
fractal branching algorithm; the log-log scale allows a direct
derivation of the parameters of an allometric scaling relation
Y = aXb.

3.1. 

Deriving allometric relations

3.2
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Approximately, straight lines on log-log plot
of stem diameter against tree biomass, leaf area,
shoot length and branch weight confirm the valid-
ity of allometric models of the shape Y = aXb for
all these parameters (Fig. 3). The slopes (b
parameters) differ among the various properties
of the same set of trees, however.

Sensitivity analysis for the individual parame-
ters (results are not shown) revealed that the
parameter with the largest impact on the b
parameter of the allometric equation is r, or thedegree 

to which link length increases with diame-
ter (Fig. 4). This parameter can bc visually as-
sessed in its more extreme values (Fig. I, upperright).
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4. Relationship between the power of an allometricbiomass 
relation and the degree to which link length increases

with branch diameter (reflecting branch decay).

3.2. 

Uncertainty in input parameters as function
of number of observations

will not produce offspring, so the parental queue
does not continue to grow and the calculations
can be completed. For each link a length, volume
and number of 'end structures' is calculated on
the basis of its diameter, and these data are stored
in various summation parameters. The procedure
for aboveground (shoot) and belowground (root)
systems of trees are similar, but in root systems a
distinction between roots with a vertical and those
with a horizontal orientation may be desirable,
and the initial split may follow different rules
(leading to a large number of root axes for a
single stemmed tree).

If such an algorithm for constructing branchingpatterns 
is applied many times to trees (o~ root

systems) of different initial diameter, Do, a range

For potential applications we need to know
how many observations on branching points arerequired 

to obtain a specified accuracy in the
parameter estimates (Fig. 5). For all parameters
our results on relative errors converge to zero,
indicating that there is no bias in the estimationprocedure. 

The error structure is approximatelysymmetric 
for the average p and q, and for Lm,the 

link length at minimum branch diameter. Forthe 
range of p, q and L, the errors are clearlyasymmetric 

and small data sets will lead to an
underestimation of the real value.

The impact of this uncertainty in parametervalue 
for the overall allometric biomass equationwas 

investigated by calculating the a and b
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6. Range in the two parameters of the allometric biomass equation (a and b) that result from the uncertainty in the value ofthe 
various input parameters, as a function of the number of observations from which the input parameters were derived.

parameter of that equation for the lowest (L) and
highest (H) parameter estimates obtained for dif-
ferent number of observation (Fig. 6). The resultshere 

integrate over the uncertainty on the parame-
ter as such and its impact on the overall scalingrelationship. 

For the intercept of the allometric
scaling relation, that equals the biomass for D =
1, the absolute range of uncertainty is less than 5kg 

per tree as soon as the parameters were derived
from at least 50 observations. The strongest im-
pact on this uncertainty stems from the uncer-
tainty on the Lm parameter. For the slope the
uncertainty on the power of the scaling relation isless 

than 0.2 when the parameters were obtained
from a data set of at least 50 branching points, orless 

than 0.1 for a data set of size 100. The
strongest impact derives from uncertainty in the p
parameter and in the r parameter, that is based on
the relation between link length and link
diameter.

tures associated with the finer branches, such as
leaves or fine roots. Such properties meet the
requirement:

f(DJ = f(Di+I, J + f(Di+I,2) (3)
where Di+ 1,1 and Di+ 1,2 originate from Di'

If the function f is of the (allometric) form
Y = aDb and applies across a substantial range of
D values, we obtain:

Yi= Y2+ Y3=aDf=aDf+i,i+aDf+i,2 (4)

If scale-independent branching rules (Eq. (I))
are followed, p and q are independent of diameter
D. If so, Eq. (4) for additive properties can only
hold true for a single value of parameter b, for
which:

pbl2 = qbl2 + (1 -q)bl2 (5)

If p = 1, the solution is b = 2, irrespective of q.
For the special case of q = 0.5, Eq. (5) leads to:

2 log 2
log 2 + logp

b= (6)

3.3. 

Allometric relations for additive properties

The observed similarity in exponents of the
allometric relations for different properties gave
rise to a further exploration of the underlying
theory. For a number of properties in a branched
system we can expect that the sum of the results
after a branching event equal that before. Exam-ples 

of properties for which this should hold true
are the number of end-points of the branched
system or the number (weight or area) of struc-

(which also leads to.b = 2 for p = 1).
For most values of p and q, Eq. (5) has to be

solved iteratively. Results (Fig. 7A) show a strong
(and interactive) impact of p and q on the b value
of additive properties. For q > 0.8 the resulting b
value responds very strongly to p < 1. Thus, for a
given set of p and q, all response parameters that
are additive will have the same power b of their
allometric equations.
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If the function g uses a power of Do other than
the b value calculated for additive properties, the
term g(Do)/(aDg) will introduce a dependence on
Do of the resulting solution for b, and the scale-in-
dependent allometric equation will only be valid
as approximation.

3.4. 

Allometric relations for non-additive properties

3.5. 

Specific root length

For many other tree properties Eq. (4) has to
be modified, to account for the response variate
between the points where D;, and D;+ 1,1 and
D;+ 1,2 are measured.f(DJ 

= f(D;+I, J+ f(D;+ 1,2) +g(DJ (7)

For e~ample, if the response variate is total tree
biomass, g(DJ should reflect the weight of link i
(or to be more precise, half the weight of link i
plus half the weights of links i + I, 1 and i + 1, 2,
respectively). This means that Eq. (5) will be
modified into:

pb/2( 

1-~)
= qb/2 + (1 _q)b/2 (8)

Specific root length for a root system can be
derived under the following assumptions:

(A) an allometric equation for the dry weight of
a (branched) root based on its proximal
diameter D, W(D) = a[Dbl

(B) a similar allometric equation for the length
of a (branched) root L(D) = a2Db2

(C) a population of roots, with a frequency dis-
tribution of root diameters that can be de-
scribed by:

aD8

CumFreq = ( -£- )n

Again, iteratively we can find solutions for b
(Fig. 7B), for a range of values of p, q and the
term g(Do)/(aDg).

We note that when the term g(Do)/(aDg) is
positive, the resulting power of the overall allo-
metric equation will increase above the value for a
truly additive property. The solutions for additive
property thus reflect the lowest value of allometric
equations for tree properties (as long as these
properties are non-negative for the current
link...).

,Dmax,
where n is a parameter (equivalent to a Gini
coefficient), and hence:

dCumfreqFreq(D) = = nD;;;:XD(n-l)-..
dD

From these assumptions we derive that:
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7. (A) Power of the allometric equation b that is compatible with additivity, as a function of p and q; (B) influence of the term
g(Do)/(aDS) on the power b of the allometric equation, for q = 0.5 or 0.8 and a range of p values.
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i Dmax w=

t 0

FreqWdD

(11

and

SumD2 = n {w~~
} 2/bl (13)

r (2 + n) t (aln)

Similarly, from assumptions Band C we
obtain:

(14)

and

the relation between link length and link diame-
ter. Fractal dimensions of various properties of a
tree (e.g. leaf area, biomass) appear to follow
specific patterns, depending on the degree to
which the property in question follows rules for
'additivity'. The fractal branching procedure can
also be used to estimate specific root length as a
function of tree stem diameter. Other applications
are in the estimation of 'green' versus 'brown'
light interception in savannah trees and the impli-
cations this has for modifying temperature with or
without competition for water with other parts of
the vegetation (Van Noordwijk and Ong, 1999).
Applicability of these equations depend on
whether or not the assumptions underlying the
fractal (scale-independent) process are met in the
real world. A procedure for testing this on indi-
vidual trees is available (Van Noordwijk and
Purnomosidhi, 1995; Van Noordwijk et al., 1996).
The basic assumptions underlying fractal branch-
ing have been tested and found to be applicable as
acceptable first approximation for a wide range of
tropical trees, above, as well as belowground,
although a number of extensions of the theory
have been suggested for various situations (Pages
et al., 2000; Ozier-Lafontaine et al., 1999; Rowe,
1999; Smith, 2001).

If the basic assumptions do inde~d apply, un-
certainty on parameter values becomes the next
issue. Results presented here suggest that a mini-
mum of 50 but preferably 100 branching points
should be used for deriving the main parameters
of the fractal branching process; from the graphs
and table presented here one can derive more
specific recommendations once the required preci-
sion in the overall outcome is specified.

Overall, the fractal branching analysis offers
promise for a better understanding of why, when
and how to modify allometric scaling relations
from the generic 'default' values recommended in
the forestry literature. Although the 8/3 rule for
allometric scaling of trees has a biomechanical
interpretation that may appear to be generic
(West et al., 1999), our results suggest that scaling
rules in the range 2-3.5 are consistent with shapes
as can be observed in real trees (Fig. 4).

We are currently testing the degree to which the
parameters of the fractal branching process are
characteristic of tree species, and thus can be

4. 

Discussion

The results of our analysis show that a consis-
tent and transparent system can indeed be de-
signed for describing trees in terms of branching
properties and relate this to total size properties
by allometric equations. The parameter of the
branching system with the single largest effect on
overall allometrics for biomass, appeared to be

L = -~ { 2(n + 2) }b2/2

t (b2+n) SumDr-;;-
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meaningfully entered in databases, or whether
they essentially depend on site and management
conditions and thus require location specific tun-
ing. The fact that the major parameters, at least in
their more extreme values, can be visually recog-
nized should lead to more confidence in the use of
the method. The allometric scaling relations as
derived with the FBA module can be directly used
in the WaNuLCAS model of tree-soil-crop in-
teractions (Van Noordwijk and Lusiana, 1999,
2000).
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