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ABSTRACT

Aim To develop a novel global spatial framework for the integration and analysis
of ecological and environmental data.

Location The global land surface excluding Antarctica.

Methods A broad set of climate-related variables were considered for inclusion
in a quantitative model, which partitions geographic space into bioclimate
regions. Statistical screening produced a subset of relevant bioclimate variables,
which were further compacted into fewer independent dimensions using princi-
pal components analysis (PCA). An ISODATA clustering routine was then used to
classify the principal components into relatively homogeneous environmental
strata. The strata were aggregated into global environmental zones based on the
attribute distances between strata to provide structure and support a consistent
nomenclature.

Results The global environmental stratification (GEnS) consists of 125 strata,
which have been aggregated into 18 global environmental zones. The stratification
has a 30 arcsec resolution (equivalent to 0.86 km2 at the equator). Aggregations of
the strata were compared with nine existing global, continental and national bio-
climate and ecosystem classifications using the Kappa statistic. Values range
between 0.54 and 0.72, indicating good agreement in bioclimate and ecosystem
patterns between existing maps and the GEnS.

Main conclusions The GEnS provides a robust spatial analytical framework for
the aggregation of local observations, identification of gaps in current monitoring
efforts and systematic design of complementary and new monitoring and research.
The dataset is available for non-commercial use through the GEO portal (http://
www.geoportal.org).
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INTRODUCTION

Global climate classifications were first developed by the ancient

Greeks (Sanderson, 1999), and were at the heart of the inception

of biogeography in the late 19th and first half of the 20th century

(von Humboldt, 1867; Köppen, 1900; Holdridge, 1947; Thorn-

thwaite, 1948). More recently, bioclimate biome classifications

have been used to underpin dynamic global vegetation models

(Prentice et al., 1992; Sitch et al., 2003). However, these existing

classifications provide limited regional detail by distinguishing

only 10–30 classes globally, and with generally coarse spatial

resolutions. More detailed approaches to describe global ecore-

gions (Olson et al., 2001) rely heavily on expert judgement for

interpreting class divisions, making it difficult to ensure reliabil-

ity across the world and limiting their use in scientific analysis

(Lugo et al., 1999).
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By contrast, statistically derived classifications, or stratifica-

tions1, of land into relatively homogeneous strata provide useful

spatial frameworks for comparison and analysis of ecological

and environmental data across large heterogeneous areas

(Paruelo et al., 1995; McMahon et al., 2001). Environmental

stratifications do not aim to classify recognizable biomes, habi-

tats or landscape units, but partition variation in independent

variables to support analysis or statistical inference. The basic

principle is that the relation between biodiversity and the envi-

ronment can be expressed in a multiple orthogonal regression

model (Jongman et al., 2006), i.e. there is a probability of occur-

rence that can be explained by the environment. Because field-

scale biodiversity is determined by many dependent explanatory

variables, stratification of the wider environment should be

based on the most important independent factors, which are

climatic for the global and continental context (Klijn & de Haes,

1994). Multivariate clustering of climate data has proved suc-

cessful in creating stratifications in many parts of the world

(Bunce et al., 1996; Leathwick et al., 2003; Tappan et al., 2004;

Metzger et al., 2005) using transparent, reproducible methods

that are, as far as possible, independent of personal bias. Such

stratifications have been used for stratified random sampling of

ecological resources, the selection of representative study sites

and summary reporting of trends and impacts bias (Jongman

et al., 2006). Nevertheless, no high-resolution global bioclimate

classification derived from multivariate statistical clustering has

been constructed until now.

This paper presents a novel global environmental stratifica-

tion (GEnS), based on statistical clustering of bioclimate data so

that subjective choices are explicit, their implications are under-

stood and the strata can be seen in the global context. It provides

a framework for coordination and analysis of global biodiversity

observation efforts (Scholes et al., 2008, 2012) and research, e.g.

for targeting research and monitoring efforts, aggregating obser-

vations and for the comparison of trends within similar envi-

ronments, and will be publicly available to support global

ecosystem research and monitoring.

METHODS

Bioclimate indicators and data

Bioclimate indicators are directly related to plant physiological

processes determining primary productivity, and therefore

provide a useful basis for stratification (Leathwick et al., 2003).

A suite of bioclimate indicators has been developed since

Köppen used observed vegetation patterns to subdivide five

global climate zones into 30 classes based on various

temperature- and precipitation-related indicators. Thorn-

thwaite (1943) stressed the importance of including better

measures to represent seasonality and plant available moisture,

developing a classification based on humidity and aridity indices

(Thornthwaite, 1948). Meanwhile Holdridge (1947) devised a

life zone system using a three-dimensional bioclimate classifica-

tion based on biotemperature, precipitation and an aridity

index, and Emberger (1930) developed a tailored pluviothermic

indicator for distinguishing climate zones in the Mediterranean.

Although there have been several more recent classifications

using bioclimate indicators to model terrestrial ecosystem dis-

tributions (Sayre et al., 2009), they are now mainly used in mod-

elling the impacts of climate change on vegetation (e.g. Sitch

et al., 2003; Thuiller et al., 2005).

For this paper, several of the most important and contrasting

methods have been reviewed to identify relevant bioclimate

indicators. The resulting list (Appendix S1 in Supporting Infor-

mation) is not exhaustive, but provides a wide range of relevant

indicators that can be calculated using the WorldClim global

climate dataset (Hijmans et al., 2005), including several mois-

ture availability indicators (CGIAR; Trabucco et al., 2008;

Zomer et al., 2008). WorldClim has the greatest spatial resolu-

tion (30 arcsec; equivalent to 0.86 km2 at the equator) of the

available global climate datasets, enabling representation of

regional environmental gradients. Appendix S1 provides an

overview of the 42 variables, including an explanation of how

they were calculated. To avoid negative numbers in subsequent

calculations, all temperature variables were converted to kelvin

(K).

Constructing the stratification

The construction of the stratification consisted of three stages.

Firstly, the initial pool of variables was screened to remove those

variables with very high correlations and select a subset of vari-

ables that represent the dominant global gradients. The second

stage entailed the actual statistical clustering. Finally, post-

processing improved accessibility of the dataset. Unless stated

differently, all calculations were performed using ESRI ArcGIS

9.2 software.

Screening of the variables

High correlation is likely between many of the 42 variables

(Appendix S1). To prevent the classification being weighted to

the most frequently used or correlated variables, a subset was

used in the clustering procedure. Firstly, a correlation matrix

was calculated to identify highly correlated variables. For pairs of

variables with a Pearson’s correlation coefficient of 1.00 a single

variable was selected and any remaining variables were omitted

from further analysis. Principal components analysis (PCA),

based on the covariance matrix, was performed on the remain-

ing list to identify those variables that did not represent domi-

nant trends in the data. Variables with eigenvector loadings > 0.1

in the first three principal components were retained for

further analysis. The eigenmatrix was calculated using ERDAS

IMAGINE 10.0.

Clustering

The classification followed the approach used by Metzger et al.

(2005) in constructing the environmental stratification for

1 When classes are not meant as descriptive units, but specifically
designed to divide gradients into relatively homogeneous subpopula-
tions we prefer to use the statistical term stratification.
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Europe. PCA was used once more to reduce the subset of input

variables into a set of fewer dimensions that are non-correlated

and independent and are more readily interpretable than the

source data (Jensen, 1996). The first three principal components

were subsequently used in the statistical clustering algorithm.

Formal stopping rules (Gordon, 1996) were considered to avoid

judgement in the procedure, but could not be implemented in

ArcGIS and do not necessarily result a better dataset (Bunce

et al., 1996; Manning et al., 2008). It was decided to distinguish

125 strata in the data, an arbitrary choice that still permits

characterization and interpretation of the strata, whilst provid-

ing far greater detail than existing approaches.

The iterative self-organizing data analysis technique

(ISODATA) (Tou & Conzalez, 1974) was used to cluster the

principal components into environmental strata. ISODATA is

iterative in that it repeatedly performs an entire classification

and recalculates statistics. Self-organizing refers to the way in

which it locates clusters with minimum user input. The

ISODATA method uses minimum Euclidean distance in the

multidimensional feature space of the principal components to

assign a class to each candidate grid cell.

Post-processing

To provide structure and support the development of a consist-

ent nomenclature, as well as to facilitate summarizing and

reporting, it is useful to consistently aggregate the strata to a

limited set of environmental zones (Bunce et al., 1996; Leath-

wick et al., 2003; Metzger et al., 2005). The dendrogram tool in

ArcGIS was used to derive a hierarchical diagram showing the

Euclidean distance between cluster means of the strata, thus

illustrating the order in which the dataset progressively com-

bines similar environments into larger groups. The dendrogram

was then used to determine the aggregation of the 125 strata into

15 to 20 global environmental zones (GEnZs), a similar number

to existing global biome classifications (e.g. Prentice et al., 1992)

and the stratifications listed before.

The GEnZs were ordered based on the mean values of their

principal component scores using the dendrogram and assigned

letters starting with ‘A’ for the zone with the lowest value. Like-

wise, within each GenZ the strata were numbered by mean first

principal component (PC1) score, assigning ‘1’ to the lowest

value. The strata were then assigned a unique code based on the

combination of the letter (GEnZ) and number (e.g. A1 or D6).

In addition, consistent descriptive names were attributed to each

GEnZ based on the dominant classification variables, as detailed

in the Results section. Finally, a legend was developed for the

strata based on the mean scores of first three components in

each stratum following Leathwick et al. (2003).

Comparison with existing classifications

The reliability of the patterns derived by the statistical clustering

can be tested by comparing them with other datasets. This is not

straightforward, because comparable datasets may not exist or

may have been created in a more subjective manner (Lugo et al.,

1999; Metzger et al., 2005). Differences between datasets could

therefore reflect differences in methodology and objectives,

rather than illustrating the strength or weakness of any new

classification (Hazeu et al., 2011). Nevertheless, it is important

to demonstrate that the GEnS distinguishes recognized environ-

mental divisions as evidenced by high correlations with inde-

pendent datasets. The strength of agreement between the GEnS

and nine global, continental and national climate classifications

was therefore determined by calculating Kappa statistics

(Monserud & Leemans, 1992).

For the Kappa analysis, the datasets that are compared must

have the same spatial resolution and distinguish the same

classes. To meet these requirements, the classifications were

resampled and projected to the Mollweide equal area projection,

and the two classifications were clipped to the largest overlap-

ping extent. A contingency matrix was calculated to determine

the aggregation, based on the greatest overlap between the GEnS

strata and the classes in the alternative dataset. Kappa could then

be calculated using the Map Comparison Kit (Visser & de Nijs,

2006). The alternative classifications used in this comparison

were: the biomes used to underpin the World Wildlife Fund

(WWF) ecoregions (Olson et al., 2001); a recently updated

Köppen map of the world (Peel et al., 2007); the European Envi-

ronmental Stratification (Metzger et al., 2005); isoclimate maps

for the United States (Sayre et al., 2009), South America (Sayre

et al., 2008) and Africa (Sayre, 2011); the ecoregions map of the

United States (CEC, 1997); the land classification of Great

Britain (Bunce et al., 1996); and a geoclimate stratification of

Spain (Regato et al., 1999).

RESULTS

The correlation matrix of the 42 variables, listed in Appendix S2,

confirmed that there were high correlations globally among

many variables. There were 10 variables with a correlation coef-

ficient of 1.00 with at least one other variable. From these vari-

ables a subset of four readily interpretable variables was chosen

for inclusion in the further analysis.

The subsequent PCA of the remaining 36 variables revealed

that the first three components, explaining 99.9% of the total

variation, were determined by only four variables: growing

degree-days on a 0 °C base2 (GDD), reflecting latitudinal and

altitudinal temperature gradients; the aridity index (Trabucco

et al., 2008), which forms an expression of plant available

moisture; and temperature and potential evapotranspiration

seasonality, which express both seasonality and continentality

(Appendix S3). These four variables were used as the input to

the actual clustering.

The PCA of the four clustering variables shows that each

component mainly relates to one variable, although the other

variables also display some influence (Table 1). PC1, mainly

determined by the GDD, and PC2, which expresses the aridity

index, explain the majority of the variation.

2 Reflects the annual sum of daily temperatures above 0 °C, a standard
variable in vegetation and crop models to determine germination.

High-resolution bioclimate map of the world
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The 125 global environmental strata were aggregated to 18

GEnZs (labelled A to R) based on the dendrogram (Fig. 1). The

GEnZs and the strata were assigned consistent codes, as

described above. In practice this means that cooler strata in a

GEnZ will have a lower number. In addition, the zones were

given a descriptive label based primarily on mean statistics for

GDD and the aridity index based on the classification in Table 2.

Two zones fell within the ‘Arctic’ and ‘Extremely cold and wet’

descriptors. To provide unique names an additional numerical

distinction was added, e.g. ‘Arctic 1’ and ‘Arctic 2’.

A map legend was constructed using the mean values per

stratum of the first three principal components to define the

red–green–blue colour scheme. PC1 (annual temperature gra-

dient) was used to define the amount of red, PC2 (aridity) the

blue coloration and PC3 (seasonality) the green coloration. The

resulting legend produces a map that clearly distinguishes well-

known climate zones, as well as more detailed divisions within

these zones (Fig. 2; see Appendix S4 for a high-resolution map

with labels in the strata). Shades of green reflect highly seasonal

continental climates ranging from bright green and petrol for

cool boreal to warmer chartreuse coloured regions; yellow

reflects hot and arid conditions; pink reflects hot and wet tropi-

cal conditions; and purple represents wet oceanic environments.

Table 3 shows that the Kappa values for the comparison of the

GEnS with existing climate classifications range between 0.54

and 0.72 indicating ‘good’ and ‘very good’ comparisons.

Table 1 (a) Eigenvalues and (b)
eigenvectors for four principal
components (PC) of the final clustering
variables.

PC1 PC2 PC3 PC4

(a)

Eigenvalues 3.6 ¥ 108 8.7 ¥ 107 2.6 ¥ 106 4.8 ¥ 105

% explained 80.1% 19.2% 0.6% 0.1%

Cumulative 80.1% 99.3% 99.9% 100.0%

(b)

Variable

var_4 Temp. seasonality -0.11 -0.09 0.95 -0.28

var_12 Growing degree-days on 0 °C

base

0.98 0.18 0.13 -0.02

var_36 Aridity index -0.19 0.98 0.07 0.02

var_37 PET seasonality -0.01 -0.05 0.27 0.96

PET, potential evapotranspiration.

Figure 1 Dendrogram based on
Euclidean distance between cluster means
illustrating the relation between the 18
aggregated global environmental zones
and the number of strata per zone.
Colours are based on the mean principal
components analysis scores of the zones,
following the same method used to
colour the individual strata in Fig. 2.

M. J. Metzger et al.
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DISCUSSION

Discussion of the results

The GEnS represents the first global high-resolution quantita-

tive stratification distinguishing more than the basic biome divi-

sions in the 20 to 30 classes. Major advantages of quantitative

approaches, argued for by Lugo et al. (1999) and summarized by

Leathwick et al. (2003), include: the much greater objectivity,

consistency and spatial accuracy of the classification process;

their ability to define hierarchical classifications that can be used

at varying degrees of detail; and their open nature, which allows

the ready incorporation of new or improved data.

The GEnS recognizes known environmental similarities, e.g.

K5 identifies similar Mediterranean climates in Europe, Aus-

tralia, Chile, South Africa and California; R9 links tropical parts

of northern Australia to Papua New Guinea, Indochina and

beyond; and G13 connects the cold mesic climates of Scotland

(UK) with the south-eastern hill country of the South Island

(New Zealand). Nevertheless, some heterogeneity remains when

the global variation in bioclimate is partitioned in 125 strata. For

example, regionally important gradients in precipitation, which

can mark significant regional differences in dry ecosystems, are

not always reflected sufficiently. In Israel the northern Negev

Desert and the city of Tel Aviv both fall in the hot and dry

stratum N6, while the latter is considered Mediterranean with

greater precipitation, concentrated in the winter (Levin &

Shmida, 2007). Such cases will occur more generally as a result

from both artefacts in the underpinning climate data and the

number of strata that are distinguished (both discussed below).

However, the results showed good comparisons with existing

classifications (Table 3) and confirm recognized climate pat-

terns. The Kappa values are similar to those reported in earlier

comparisons of European classifications (Bunce et al., 2002;

Ortega et al., 2012) and although the details of the classifications

differed, there were broad similarities reflecting important divi-

sions along major environmental gradients.

Limitations and uncertainties

Validation challenges

Traditionally, spatial classifications are validated by comparison

with in situ observations of the same phenomenon. However,

since environmental stratifications do not aim to describe

observable entities, but to partition the variation in underlying

independent variables, such approaches are unsuitable here. It

would be possible to test the statistical stratification efficiency

for reducing errors in sample estimates (de Gruijter et al., 2006),

but in fact the construction of a stratification would be the first

step in the design of such a sampling framework for studies

covering large environmental gradients, as it will help ensure

that sample units are geographically spread across the domain

and that a representive sample of the diversity of environmental

conditions is covered (Bunce et al., 1996; de Gruijter et al., 2006;

Ståhl et al., 2011). Alternatively, stratification efficiency can be

calculated if the full population of the target parameters is

known (de Gruijter et al., 2006), but existing global spatial eco-

logical and environmental data (e.g. global land cover maps) are

thematically too coarse to be useful. This leaves the presented

comparison with existing climate or ecosystem classification

(Table 3), which provides reassurance, but should be interpreted

with caution because of differences in objectives and methods.

The aim here was to develop a spatial framework for the

integration and analysis of ecological and environmental data.

Optimizing the stratification for any quality criteria or bench-

mark dataset is problematic give the current state of consistent

global ecological data, and is furthermore besides the point for a

generic framework. The true validity of the approach can there-

fore only be demonstrated through application. It is nevertheless

important to be aware of specific limitations and uncertainties

in the current approach, which are discussed below.

Variable selection

A wide range of bioclimate indicators were considered, but

others could have been included in the analysis. Some arbitrary

choices were inevitable in the statistical screening that could

have influenced the outcome (e.g. eigenvector loadings > 0.1 in

the first three principal components). The results nevertheless

show that there is a distinct division between the dominant

variables above the threshold (eigenvector loadings 0.98, 0.98,

0.94 and 0.27; Appendix S3), and the remaining variables

(eigenvector loadings of 0.09 and lower). Furthermore, the final

four variables represent bioclimate characteristics that are

Table 2 The global environmental zones (GEnZs) were given
descriptive names based on the mean values of (a) the growing
degree-days on a 0 °C base (GDD) and (b) the aridity index for
the strata. An exception was made for Arctic temperatures in
which case only the label ‘Arctic’ was used.

(a)

GDD Label

[0, 1000) Extremely cold

[1000, 2500) Cold

[2500, 4500) Cold temperate

[4500, 7000) Warm temperate

[7000, 9000) Hot

[9000, •) Extremely hot

(b)

Aridity index Label

[0, 0.1) Arid

[0.1, 0.3) Xeric

[0.3, 0.6) Dry

[0.6, 1.0) Mesic

[1.0, 1.5) Moist

[1.5, •) Wet

High-resolution bioclimate map of the world
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included in most existing classifications. Thus the screening pro-

vides statistical rules for the selection of the condensed subset of

variables.

A priori selection of 125 strata

Conceptually it would have been desirable to use statistical stop-

ping rules (Gordon, 1996) to determine the optimal number of

strata, reducing judgement by determining a mathematically

optimal number of divisions in multivariate parameter space.

Such cut-off rules balance high intra-cluster similarity and low

inter-cluster similarity, but such internal criteria for the quality

of a clustering do not necessarily translate into good effective-

ness in an application (Manning et al., 2008). Outcomes would

therefore require further testing through application, as sug-

gested above, or comparisons with external criteria of cluster

quality. However, the latter would require some form of bench-

mark for comparison, which does not exist. Existing statistical

environmental stratifications have therefore been developed for

an arbitrary number of strata that was deemed practical whilst

providing sufficient detail (Bunce et al., 1996; Regato et al.,

1999; Leathwick et al., 2003; Metzger et al., 2005). Bunce et al.

(1996) provide a further discussion of statistical stopping rules

in environmental stratification and concluded that accepting an

arbitrary number was appropriate.

The number of strata for the GEnS was therefore based on the

objectives and envisaged application of the dataset, i.e. to

provide greater detail than previous global approaches, and to

provide a suitable framework for global biodiversity research

and monitoring. Previous experience (see examples in

Table 3), and consultation within the GEO BON commu-

nity (http://www.earthobservations.org/geobon.shtml), indi-

cated that between 100 and 150 strata would be an appropriate

balance between increased detail and complexity. The choice for

125 strata was the middle point of the envisaged range, and

initial tests indicated that additional divisions result mainly in

increased altitudinal and latitudinal bands, which in our

opinion did not justify added complexity. The chosen number of

strata is comparable to the environmental stratification of

Europe (Metzger et al., 2005) and the isoclimates of the United

States (Sayre et al., 2009) (Table 3).

Classification method

The selected classification method was successfully used before

to construct a European stratification (Metzger et al., 2005), but

other algorithms exist that could have been tested and compared

through performance indices, e.g. the silhouette index (Rous-

seeuw, 1987). As discussed before, deciding on the best

stratification is difficult without external quality criteria.

Figure 2 Map of the global environmental stratification, depicting 125 strata at a 30 arcsec (approximately 1 km2 at the equator) spatial
resolution in the Winkel Tripel projection. The legend provides a visual combination of the three main climate gradients incorporated in
the clustering. Shades of green reflect highly seasonal continental climates ranging from bright green and petrol for cool boreal to warmer
chartreuse coloured regions; yellow reflects hot and arid conditions; pink reflects hot and wet tropical conditions; and purple represents wet
oceanic environments. A high-resolution map is available as Appendix S4.

M. J. Metzger et al.
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However, statistical environmental stratifications have much in

common, even when clustering algorithms differ (Bunce et al.,

2002; Ortega et al., 2012). Differences occur mainly in the sub-

division of long continuous gradients without clear boundaries.

In such cases the precise location of the division will have rela-

tively little influence on the efficiency of the stratification.

Climate data

There are limitations to the climate data used to construct the

GEnS, which will affect its quality. Hijmans et al. (2005) discuss

how the quality of the surfaces is spatially variable and depends

on the local climate variability in an area, the quality and density

of the observations and the degree to which a spline can be fitted

through it. Locally important climate drivers, e.g. those caused

by aspect in mountain areas or the formation of sea fog along

coastal ranges, are also poorly represented. Despite these limita-

tions, WorldClim provides sufficient spatial detail to distinguish

and partition steep environmental gradients.

A further consideration is the stability of the strata under

climate change. The GEnS is based on climate observations from

1950–2000, a period of comparatively stable climate. Under

climate change, the current distribution of the strata will shift

polewards and upwards. Climate change scenarios can be used

to visualize projected change, which can provide insight into

broad trends as well as regional impacts (Metzger et al., 2008).

However, for analytical purposes, such as the design of an obser-

vation network, a stratification should ideally be stable. Given

current projected shift in biomes (Loarie et al., 2009) this seems

unlikely. Nevertheless, the distribution of the GEnS strata, which

broadly follow attitudinal and latitudinal gradients, is likely to

remain appropriate for the coming decades.

CONCLUSION

The GEnS provides a robust spatial analytical framework for the

aggregation of local observations, identification of gaps in

current monitoring efforts and systematic design of comple-

mentary and new monitoring and research. The dataset can

support global environmental assessment, and has been identi-

fied as a focal geospatial data resource for tasks of the Group on

Earth Observation Biodiversity Observation Network (GEO

BON; Scholes et al., 2012). The dataset is available for non-

commercial use through the GEO portal: http://www.

geoportal.org.
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