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a b s t r a c t

Rubber agroforests in the mostly deforested lowlands of Sumatra, Indonesia are threatened by conver-
sion into monoculture rubber or oil palm plantations. We applied an agent-based model to explore the
potential effectiveness of a payment for ecosystem services (PES) design through a biodiversity rich
rubber eco-certification scheme. We integrated conditionality, where compliance with biodiversity
performance indicators is prerequisite for awarding incentives. We compared a PES policy scenario to
‘business-as-usual’ and ‘subsidized land use change’ scenarios to explore potential trade-offs between
ecosystem services delivery and rural income. Results indicated that a rubber agroforest eco-certification
scheme could reduce carbon emissions and species loss better than alternative scenarios. However, the
suggested premiums were too low to compete with income from other land uses. Nevertheless, inte-
grating our understanding of household agent behavior through a spatially explicit and agent-specific
assessment of the trade-offs can help refine the design of conservation initiatives such as PES.

© 2014 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-SA
license (http://creativecommons.org/licenses/by-nc-sa/3.0/).
1. Introduction

Land-use/cover change (LUCC) is a major driver of global envi-
ronmental change and is accelerating due to continuous growth of
the global population and export-oriented agriculture (DeFries
et al., 2010; Lambin and Meyfroidt, 2011). Indonesia has been
ranked as having the second highest rate of deforestation among
tropical countries after Brazil (Margono et al., 2012) due to the rapid
replacement of vast areas of primary lowland forests with mono-
culture plantations of oil palm, rubber and other crops (Broich et al.,
2011; Dewi et al., 2013; van Noordwijk et al., 2012). As a result,
Indonesia has been identified as one of the main global contribu-
tors of greenhouse gasses stemming from deforestation and forest
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degradation (IPCC, 2007), suffering associated with biodiversity
loss, land degradation, and impairment of ecosystem services,
along with resulting negative effects on local livelihoods. A recent
land-use intensity analysis in Sumatra found that over time, land
dynamics have shifted from an overall pattern of primary forest loss
in the 20th century to the loss of agroforests during the 21st cen-
tury (Villamor et al., 2014). Although lowland rubber agroforests
(hereafter ‘rubber agroforests’) support relatively higher biodiver-
sity, greater carbon stocks and local livelihoods, this land use is
giving way to monoculture oil palm and rubber plantations (Rudel
et al., 2009; van Noordwijk et al., 2012). Since very few primary
forests remain in Sumatra, conserving rubber agroforests is one of
the few options for supporting biodiversity on the island, and in-
centives to prevent further land cover conversion are an urgent
conservation need (Ekadinata and Vincent, 2011; Feintrenie
et al., 2010).

Payments for ecosystem services (PES) schemes are one of the
policy options being considered to help sustain rubber agroforests in
Sumatra. The PES schemes have been implemented in many coun-
tries, particularly in agricultural landscapes, to add ecosystem
nder the CC BY-NC-SA license (http://creativecommons.org/licenses/by-nc-sa/3.0/).
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services (ES) to the portfolio of production choices in a sustainable
way (Pagiola et al., 2004). Through PES, landuse decisions that
contribute to greater ES provision can be rewarded with modest
incentives, as there are land-use options in the mosaic of remaining
natural or secondary forests with existing low-to-intermediate in-
tensity agriculture that provide financial returns in addition to
environmental benefits. However, there is no clear understanding of
how PES schemes affect the synergies and trade-offs among ES or of
the factors that contribute to participation in PES schemes. Four
design principles have been identified to determine if a PES scheme
is effective and fair: realistic objectives or goals, conditionality of
benefits, voluntary participation, and pro-poor outcomes (van
Noordwijk et al., 2007). Among these four principles, conditionality
(i.e., benefits are conditional on achieving performance measures
specified in contracts and understood by all relevant stakeholders)
distinguishes PES from other conventional forms of incentives such
as taxes and subsidies (van Noordwijk and Leimona, 2010). This PES
principle establishes the need for performance indicators that can be
measured to determine if the scheme is effective. To better under-
stand the impact of PES schemes, including inherent complexities
related to the future of rubber agroforests, we developed an agent-
based model (ABM) that simulated land-use dynamics named the
Lubuk Beringin-Land Use Dynamics Simulator (LB-LUDAS). We
selected this modeling approach because it is primarily used for
simulating socio-ecological processes to understand the dynamic
interactions between the social and natural systems as well as for
policy and institutional analysis of these systems (Kelly et al., 2013).
Its main strength is that it incorporates the decision-making process
of heterogeneous households (Matthews et al., 2007), while
capturing feedback effects and nonlinearities from natural system
processes. The main focus of ABM is the discovery of emergent
behavior, where large-scale outcomes result from simple in-
teractions of heterogeneous household agents. The agents are typi-
cally able to react to (locally) perceived changes in their environment
through action on the environment or internal adaptation (Kelly
et al., 2013). Because of this, many ABM models have been used to
simulate LUCC scenarios taking land-use decisions into account
(Bousquet and Le Page, 2004; Le et al., 2010, 2008; Villamor et al.,
2011b). Recent similar applications include: simulating the effects
of social norms on enrollment in a PES program in China (Chen et al.,
2012), simulating land-use decision making of the farm households
participating in PES schemes of the Sloping Land Conversion Pro-
gram in China (Sun and Müller, 2013), and assessing changes in
household-level inequity associatedwith the transition from shifting
cultivation practices to rubber plantation adoption in Laos (Evans
et al., 2011). Most of these applications have strongly emphasized
the land-use decisionmaking of households. Though very important,
this aspect of PES is limitedwith respect to revealing the real impacts
of these schemes on the provision of ES.

In this research we simultaneously addressed the integration of
household decision making regarding PES participation and
competing policies, and the potential ES trade-offs or synergies
emanating from those decisions. Also, we explicitly integrated
conditionality as an innovative aspect of assessing PES schemes
using an ABM to assess the effectiveness of the proposed PES
design. By coupling the socio-economic and ecological systems of
the rubber agroforest landscape, our objectives were: (1) to test the
internal consistency of the model as a basis for exploring policy
options that extend beyond historical trends; (2) to explore the
policy efficiency of environmental programs that provide economic
incentives for achieving environmental goals, specifically in the
form of eco-certification and price supports for biodiversity-
friendly rubber production; and (3) to quantify trade-offs be-
tween local livelihoods and ES delivery (i.e., agro-biodiversity
conservation, carbon emission reduction, and crop yields) across
plausible levels of external investment. Household land-use
choices, behavior, and preferences were determined using a com-
bination of methods and translated into decision rules for the LB-
LUDAS model.

2. Study area and data

2.1. Study area

The study area includes three villages, Lubuk Beringin, Laman
Panjang, and Buat, in the Jambi Province of Indonesia on the island
of Sumatra, and the surrounding area of around 15,000 ha (Fig. 1).
The area stretches along the foothills of Kerinci Seblat National
Park, which is home to endangered species such as the Sumatran
tiger. There are four major land-use/cover types in the study area:
forest, rubber agroforest, monoculture rubber, and rice field
(Table 1). Rubber agroforest was formerly the dominant land use in
Jambi Province (van Noordwijk et al., 2012).

Due to the relatively low latex productivity of rubber agroforests,
most of the surrounding area has been converted to more profitable
land uses such as monoculture rubber and oil palm plantations.
Moreover, initial investments for plantation establishment were
made through loans from private sector and state-owned companies
provided to farmers through credit cooperatives as a form of agri-
cultural support (i.e., low-cost capital with a maximum value of
about US$ 5800). Oil palm concessionswere planned and licensed by
the provincial government for virtually all secondary forests, often
including large tracts of rubber agroforest owned and managed by
smallholders (Minister degree No. 720/KPTS-II/1989). This effort has
been accompanied by a government settlement program to address
labor shortages in the provinces. Jambi is one of provinces targeted
by the program, inwhich a large settler workforce, mostly from Java,
is allocated to the labor-intensive rubber and oil palm plantations.
The settlers are provided with land share certificates for 2 ha parcels
for the establishment of monoculture rubber or oil palm plantations
(Vermeulen and Goad, 2006).

A number of studies have described the rich biodiversity and
ecosystem functions supported by rubber agroforests (Beukema
et al., 2007; Griffith, 2000; Joshi et al., 2003; Rahayu, 2009;
Rasnovi, 2006; Schroth et al., 2004; Tata et al., 2007; Tomich
et al., 2004, 1998, 2001). To protect the rubber agroforests from
conversion to other land uses, conservation agreements were
developed under the Rewarding Upland Poor for Environmental
Services (RUPES) program of the World Agroforestry Centre
(ICRAF). The main purpose of these agreements was to develop and
test appropriate schemes for agro-biodiversity conservation for
agroforests through an action-research approach. Conservation
agreements are the initial step toward institutionalizing payment
schemes for agro-biodiversity through eco-certification (Villamor
et al., 2011a). Eco-certification efforts target the raw materials
from crops produced in biologically diverse transitional systems
and verify that producers have used management practices that
conserve ecosystem services (Bennett, 2009). In 2009 the Waseda-
Bridgestone Initiative of Japan granted financial support to a local
NGO, Komunitas Konservasi Indonesia, together with ICRAF for a
feasibility study of the eco-certification of rubber in the villages of
Lubuk Beringin and Laman Panjang. According to the results of this
feasibility study, local agroforest farmers were negotiating for an
increase of US$ 1 over the baseline price (a 40% increase) for dry
rubber latex (Akiefnawati, personal communication).

2.2. Data

We surveyed 95 households in the study area between February
and March 2010 that were randomly selected from a total



Fig. 1. Map of the study area in the Jambi Province of Indonesia on Sumatra.

Table 1
Dominant land-uses/cover types in the study area.

Land use/cover type

Forest consists of dense canopy cover with variable species composition,
structure, age, and history of timber extraction. As of 2002 most remaining
forest exists above altitudes of 500 m (asl) and only small forest remnants
persist in the lowland peneplains.

Rubber agroforest is dominated by rubber trees along with other tree species and
has a structure similar to forest. This is also called ‘jungle rubber’ because of
the presence of native woody species that help protect the rubber trees from
weeds (Gouyon et al., 1993). Rubber yields from this cover type range 400
e600 kg of dry rubber per ha/yr.

Monoculture rubber refers to intensively managed plantations that consist
entirely of rubber trees with other shrub and groundcover species. This cover
type includes less intensively managed smallholdings. Rubber yields from
this cover type range 1000e1800 kg of dry rubber per ha/yr.

Rice field refers to non-irrigated upland rice production areas.
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population of 550 households. The objective of the survey was to
elicit data on household characteristics, preferences, and behavior.
We used the survey to explore: (1) household profiles and land-use
characteristics, and (2) household land-use choices under specific
policy scenarios (i.e., PES adoption and willingness if establishment
capital or subsidies are provided). We also asked about the justifi-
cations behind land-use decisions in order to better understand
household motivations and preferences. We applied principal
component and cluster analyses to the survey data to characterize
the households. Two types of households were identified based on
economic status: Type-1 households that were economically ‘bet-
ter-off’ and Type-2 households that were ‘poor.’ The difference
between the two household types was due to the variability of
income generation from rubber and rice production. Rice income
represented a 10% greater share in Type-1 households, while rubber
income represented a 10% greater share among Type-2 households.

For each household type, the current and preferred land-use
choices were assessed using multinomial logistic regression. We
assessed willingness to adopt PES using binary logistic regression
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(Villamor, 2012; Villamor et al., 2011a). These land-use choice and
willingness to adopt results became the basis of agent decision
making for developing three model scenarios; the current or
‘business-as-usual’ (BAU) scenario, the ‘with subsidies’ (SUB) sce-
nario, and the ‘adopt PES’ scenario, which are further described in
Sections 3.1.3 and 3.2. Table 2 presents a summary of the choice
probabilities under the three scenarios. In addition to the house-
hold survey, we employed land-use role playing games (RPG) with
the survey respondents to refine the set of decision rules for the
ABM (Villamor and van Noordwijk, 2011). The RPG exercise helped
reveal close-to-reality behaviors and responses to external actors
who are interested in converting the respondents' rubber agro-
forests (e.g., oil palm and timber companies) and to PES negotiators
who are interested in conserving rubber agroforests. Land-use
game boards were provided to each village and allowed the
players to change land uses according to the outcome of negotia-
tions with external actors. The results of this exercise were also
used to validate the ABM results, particularly regarding land-use
changes (see Section 2.2).

To make the sample households' farm parcels spatially explicit,
plot data were collected through a participatory mapping effort. A
parcel map with high resolution and true color images was
developed using Google Earth (2003) and geo-referenced with a
700 m eye-view using PCI Geomatica 9.1. A total of 291 parcels
managed by the 95 sample households were identified and geo-
referenced. The distances from parcels to households, major
roads and town centers were derived from this map. A digital
elevation map with 30 m resolution was used to derive a wetness
index, and aspect and slope values for individual parcels. A vali-
dated 2005 land-cover map (30 m resolution) was prepared from
Landsat ETM images (Ekadinata and Vincent, 2011). The enrich-
ment factors of different land-uses were also integrated into the
model as decision-making variables and processed using Netlogo
(Verburg et al., 2004).

3. Methods

3.1. The LB-LUDAS model

The LB-LUDAS model was developed to explore the potential
trade offs among ES provided by rubber agroforests. The model
framework is based on LUDAS (Le et al., 2008), a multi-agent sys-
tem model for the spatio-temporal simulation of coupled human-
elandscape systems. The LB-LUDAS model was described using the
ODD (Overview, Design concept, and Details) protocol (Grimm
et al., 2006, 2010).
Table 2
Land-use choice probabilities and willingness to adopt PES among Sumatran
households, (2010).

Land-use type Probability (%)

BAU (current) SUBa Adopt PES

Yes No

Type-1 households 81 19
Rubber agroforest 33 87
Monoculture (rubber or oil palm) 1 13
Rice field 66 0

Type-2 households 92 8
Rubber agroforest 99 47
Monoculture (rubber or oil palm) 1 53
Rice field 0 0

a Under this scenario land-use choices are supported by financial investments in
the next 5e10 years. For the detailed logistic regression results see Villamor (2012).
3.1.1. Overview

3.1.1.1. Purpose. The LUDAS model was primarily designed to
consider land-use decisions at forest margins with the following
three objectives: (1) to explore the magnitude of possible socio-
ecological changes caused by different land-use policy in-
terventions over space and time; (2) to identify the most strongly
affected components of the system (what), locations (where), and
periods (when) with respect to specific policy interventions; and
(3) to highlight policy interventions that are likely to enhance
environmental and socio-economic benefits efficiently (Le et al.,
2008). Our research had a fourth objective: to explore the poten-
tial trade-offs and synergies of policy interventions on the goods
and services over space and time.
3.1.1.2. Agents and their state variables and scales. The LB-LUDAS
model consists of two types of agents, human and landscape
agents, each with several state variables described below.

1) Human agents are representations of individual farm house-
holds. The state variables of these agents capture the sustainable
livelihood capital of each household. This includes social iden-
tity (or identification number), age, group membership, and
human resources (i.e., household size, dependency ratio, and
education), land and natural resources (e.g., land holdings and
land structures), financial capital (e.g., gross income and gross
income per capita), physical capital (e.g., access to markets and
distance to town), and policy access (e.g., participation in a
conservation agreement and involvement in related activities).
The human agents are also spatially explicit in terms of house-
hold location.

2) Landscape agents are congruent land pixels with characteristics
corresponding to GIS-raster layers of biophysical spatial vari-
ables (e.g., land cover and wetness index), neighborhood spatial
characteristics (e.g., enrichment factors of land-use pattern),
economical spatial variables (e.g., distance to nearest road and
town center), institutional spatial variables (e.g., parcel owners
and zoning restrictions), and household collections of disjointed
neighborhood household plots (see Prediction in Section 3.1.2).

Each time step represents one year. Each grid cell or pixel rep-
resents a 30 m � 30 m area and the model landscape covers
156 km2. The environmental variables that drive agent behavior in
the model are forest protection zoning, market prices, policy in-
terventions (e.g., PES schemes), and neighborhood land-use and
livelihood conditions. Similar to the general LUDAS framework, the
behavioral strategy of household agents change over time based on
annual evaluations of updates in land-use and livelihood structures
of the surrounding environment. The parameters determining
household behavior were treated as state variables that are stored
in the memory of household agents (Le et al., 2010). These variables
include the set of preference coefficients reflecting the relative
importance of various environmental, socio-economic, and policy
factors in household land-use decisions, and a set of ratios that
determine the amount of labor allocated for each aspect of liveli-
hood activities.
3.1.1.3. Process overview and scheduling. The basic LB-LUDAS sce-
nario simulation consisted of 12 main steps (Fig. 2). The main time
loop of the simulation program, called annual production cycle,
includes sequential steps, which are agent-based and integrated
with patch-based processes. In most cases all household and
landscape agents' actions are synchronized. The LB-LUDAS model
was coded using Netlogo version 5.0.5 (Wilensky, 1999).



Fig. 2. Flow chart showing main steps of the LB-LUDAS model simulation process (modified from Le et al., 2008), for land use decisions among Sumatran households.
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3.1.2. Design concepts
The LB-LUDAS model was designed to address the concepts of

heterogeneity, diversity deficits (Villamor et al., 2011b), and the
complexity of coupled humaneenvironmental systems in land-use
decisions that result in trade-offs. These concepts were taken into
account using variables that affect agent decisions and the complex
sub-models and processes within agents.
3.1.2.1. Emergence. The LUCC at the landscape level emerge from
two micro-processes: (1) land-use change caused by household
agents; and (2) natural succession of the vegetation cover. In the
LB-LUDAS model the choice of adopting PES (see Sub-models Sec-
tion 3.1.3) is linked with the biodiversity performance (indicator
measurement) of a certain land use. This linkage could provide new
insights on the potential impacts on the land over space and time.
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3.1.2.2. Adaptation/learning. Adaptive traits of each individual
agent are explicitly processed, mainly by land-use decisions and
changes in behavior (i.e., the preference coefficient of land-use
choice function, willingness to adopt policies, and the structure of
labor allocation). At first, agents adapt to existing socio-ecological
conditions by choosing the best land use in the best location in
terms of utility (using heuristic rule-based behavior). Then, a
household's behavioral modelmay change by imitating the strategy
of the household group most similar to it (Le et al., 2010, 2012). In
this way, individual agent decision models may change over time
and context. Also, a household agent accumulates landscape
knowledge by updating past landscape visions (see Prediction
below) to describe the basic landscape space.

3.1.2.3. Objectives. Themodel applies a bounded-rational approach
for household agent decision making in which household access to
information is limited. This approach follows an ordered-choice
algorithm (Benenson and Torrens, 2004; Le et al., 2010). In the al-
gorithm, a household calculates the utilities (expressed in proba-
bility terms) for all the land uses and locations within its domain
and for the policy scenario. The household can choose the option
with the highest utility or take risks by selecting other alternatives.

3.1.2.4. Prediction. The LB-LUDAS model has a landscape vision
module that stores the spatial information perceived by each
household from the landscape, and a program of instructions for
generating agent behavior under different circumstances (Le et al.,
2008). In this module, household agents recognize spatial infor-
mation, analyze trade-offs, and optimize spatial land-use choices
only within their own parcels.

3.1.2.5. Sensing. In the LB-LUDAS model, household agents are
assumed to have perfect knowledge of the landscape characteris-
tics (i.e., through landscape vision) and neighborhood land-use
pattern variables (Verburg et al., 2004), which they use for evalu-
ating land-use alternatives.

3.1.2.6. Interaction. Both direct and indirect interactions between
agents are assumed in the model. Direct interaction occurs when a
household agent transfers information (i.e., state variables) to
younger household agents for their own decision-making process,
or when two or more household agents find their best land-use
alternative in the same location. In this latter situation a random
procedure will let the agent(s) leave the location and begin another
search. Indirect interaction occurs among household agents when
land-use conversion caused by households leads to changes in the
decision space of other agents in the following time step.

3.1.2.7. Stochasticity. Stochasticity is incorporated into the LB-
LUDAS model through five different processes: (1) initialization of
household population; (2) choosing plot locations for the newly
created household agents and remaining population generated
during the system initialization; (3) preference coefficients in the
land-use choice function; (4) ecological sub-models that produce
variability in the processes; and (5) some status variables that are
not affected by agent-based processes (defined by even distribution
and pre-defined limits).

3.1.3. Details
3.1.3.1. Initialization. Regarding the initial state at t ¼ 0 of each
simulation run, the LB-LUDASmodel follows the same initialization
steps as the LUDAS model (Le et al., 2010):

Step 1: The data of a sample household (Ns ¼ 95) are imported,
and the user can select the size of the total population (Nt ¼ 380,
the study area population in 2005). Assuming that the sample
(Ns) and the total population (Nt) have the same distributions as
the status variables, a household population subset Ns � int(Nt/
Ns) (i.e., 95� 4 ¼ 380) is generated by multiplying the household
sample by the integer component of the ratio Nt/Ns. The gener-
ation of the remaining fraction of the total population, mod(Nt/
Ns), is generated by a random selection of households from the
sample (Ns). As the mod(Nt/Ns) component is mod(380/95) ¼ 0,
the entire initial household population is a deterministic expan-
sion (four times) of the sampled household set. The 2005 land-
cover map is the initial landscape of the model imported as
GIS-raster files of landscape variables that are either from sec-
ondary data or produced from spatial analyses.
Step 2: The land parcels of newly generated households are
created using bounded-random rules.

3.1.3.2. Sub-models. In the original LUDAS model there are 13 key
sub-models and calculation routines (Le et al., 2008). For the LB-
LUDAS model we incorporated the following five additional sub-
models and calculation routines:

1) The PES-adoption sub-model stochastically calculates the
probability of whether the household agents adopt the PES
scheme or not based on their preference coefficients and the
initial conditions at each time step. The preference coefficients
were derived from binary logistic regression (Villamor et al.,
2011a). This sub-model is integrated into the agent's decision-
making process based on two rules: (1) if the household de-
cides to adopt the PES scheme, then do rubber agroforest, and (2)
otherwise look for another land-use for current landholdings
(Fig. 3a). This sub-model is linked to the Calculate-species-richness
sub-model, creating an interaction between socio-economic state
variables and the bio-physical processes in the systems.
2) The Calculate-species-richness sub-model deterministically
calculates the estimated species richness in each land-use type
(e.g., rubber agroforests). The estimated species richness of rubber
agroforest serves as a biodiversity performance indicator mea-
surement for the eco-certification scheme (see Section 3.2). Spe-
cies richness is estimated using the power function of the species-
area relationship (SAR) (Preston, 1960; Rosenzweig, 1995):

S ¼ kA exp z (1)
where S is the number of tree species, A is the area of the sample,
and k and z are coefficients.

Eq. (1) has been used to measure the consequences of changing
land use on biodiversity by van Noordwijk (2002), Perreira and
Daily (2006), Nelson et al. (2009), and Brady et al. (2012). In this
study, we parameterized the SAR for each vegetation class at
different successional stages: pioneer (0e5 years), young sec-
ondary (5e20 years), late secondary (20e50 years), and forest
(>50 years). For each vegetation class, we first depicted the
experimental/observed species-area curves using EstimateS
software (Colwell, 2009) and plot-based survey data. Then we
estimated the k and z parameters in Eq. (1) by fitting a log-linear
regression (ln S ¼ ln k þ zln A). The results are presented in
Table 3. The vegetation class (pioneer, young secondary, late
secondary, or forest) is determined by the plot age and the
ecological distance from the forest from the Natural-transition
sub-model (Le et al., 2008).
Once the initial species richness is estimated, the updated spe-
cies richness over time in response to land-use change is esti-
mated by applying the Tilman and Lehman (1997) equation for
species loss, which is formally expressed as:



Fig. 3. Flow chart of agent decision-making processes under the (a) adopt PES and (b) with subsidy support scenarios of the LB-LUDAS.

G.B. Villamor et al. / Environmental Modelling & Software 61 (2014) 151e165 157
SD ¼ k½ð1� DÞAv�exp z (5)

where SD is the number of species remaining after the land-use
change, D is the proportion of the habitat area destroyed, and Av
is the area of the original habitat. For the k and z parameters, we
used the values from Eq. (2). The D variable is sensitive to land-use
conversion by household agents.

3) The Calculate-carbon-stocks sub-model deterministically calcu-
lates the carbon stocks of each land-use type by assigning a time
averaged carbon density. The output is used to estimate the
possible carbon emissions from land-use changes under
different scenarios. In estimating the carbon-stock dynamics,
we followed the Intergovernmental Panel on Climate Change
(IPCC) approach to measure the emissions from LUCC using
stock differences (IPCC, 2006). Accordingly, the carbon stock
changes were measured at two points in time using two factors:
activity data and an emission factor. The activity data are
expressed in terms of the area of land use or land-use change,
while the emission factor is the annual carbon-stock difference
between two types of land-use systems per unit area (IPCC,
2006). To determine the net carbon release (emissions) or net
carbon sequestration (stocks) in the study area, the activity data
(which are derived from the simulated land-cover changes) are
Table 3
Species richness estimator equations of the LB-LUDAS.

Vegetation class Equation

Young secondary (5e20 years) Se ¼ 1:60A0:440 (2)

Late secondary (20e50 years) Se ¼ 5:84A0:202 (3)

Forest (>50years) Se ¼ 1:66A0:424 (4)

Note: Data for the pioneer class was not available.
multiplied by the changes in time-averaged carbon stocks (Mg/
ha) with each pairwise land-use type.

4) The Preferred-land-use sub-model is integrated into a decision-
making routine called the FarmlandChoice module (Le et al.,
2008). This sub-model calculates the probability that the
household agents choose their preferred land use under the
condition of ‘if supported by financial investment or subsidies’
with a time element of five to ten years. These preference co-
efficients were derived from multi-logistic regression and inte-
grated in the moving phase (when the agent is ready to convert
to a new land use) as shown in Fig. 3b.

5) The Financial-return sub-model estimates the annual financial
return to household agents from different land uses. The yields
generated from the crop-production sub-model (i.e., for rubber
and rice) are captured by this sub-model (Table 4), where all
crop production costs (e.g., labor and agro-chemical inputs) are
deducted from annual revenues. At the end of the simulation,
the results are used to estimate the net present value (NPV) of
the different land uses, which serves as an indicator for the
livelihood options of the household agents in each scenario.

To investigate the financial returns of land-uses (e.g., mono-
culture rubber, rubber agroforest, and rice field), we calculated
their NPV:

NPVL ¼
XT

t¼0

PLt Y
L
t � CL

t t

ð1þ rÞt (6)

where superscript L stands for land-use activity; Pt is the farm-gate
price per unit of harvested product; Yt is the harvested yield of rice
and rubber (kg/ha); CtL is the labor and input costs of the land use
activity (US$/ha); t is the length of the simulation period in years (0,
1, 2, … t), with t being equal to 20 years; and r is the real interest
rate of 20% (Wibawa et al., 2005). Rice was valued at US$ 1/kg and
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dry rubber was US$ 2.5/kg. The variable costs of each crop were
derived fromWulan et al. (2008) and labor costs were set at US$ 2/
day.We assumed that farmers practice conventional land uses, thus
there are no costs for rice cultivation in t ¼ 0. For presentation
consistence of NPV of rice and perennial crops, the discounted cost
and revenue values of perennial crops during the establishment
period (i.e., t ¼ 0) and first year (i.e., t ¼ 1) were summed up and
presented as in first year. We also assumed that an additional US$
70/ha/yr is generated beginning at year eight from intercropping
fruit trees within rubber agroforests, which is a practice observed
during the field survey.

Table 4 presents a summary of the key parameters and data
sources for the other sub-models of LB-LUDAS including appro-
priate evaluation tests (Bennett et al., 2013). A total of six simula-
tion runs were performed to compute the average and the standard
error values of each indicator.

3.2. Scenarios

To investigate the trade-offs associated with rubber agroforests,
three main scenarios were developed and their parameters are
summarized in Table 5. The scenarios are primarily based on
Table 4
Sub-models and parameters in the LB-LUDAS.

Sub-model Brief description Explanatory variable

Variable

Calculate-species-richness A function calculates species
richness using the power
function of the species-area
relationship (Preston, 1960;
Rosenzweig, 1995)

Area of a continuous
of a vegetation cover

Forest-growth-response A function predicts the basal
area of rubber agroforests
(Le et al., 2008; Villamor, 2012)

Previous basal area (

Yield-mono-rubber Yield of mono-culture rubber
plantation (dry kg/ha/yr)

e

Yield-rice Extended CobbeDouglas yield
function of rice field
(dry kg/ha/yr) (Villamor, 2012)

Labor input (days/ha
Agro-chemical input
Wetness index
Farm plot area (m2)

Yield-rubber-agroforest Extended CobbeDouglas yield
function of rubber agroforest
(dry kg/ha/yr) (Villamor, 2012)

Labor input (days/ha
Wetness index
Number of mature ru
Number of seedlings

Calculate-carbon-stocks A look-up procedure calculates
carbon stock (Mg) for each patch
based on the average carbon
density of each land cover type

Land use/cover

Preferred-land-use Multi-nominal logistic functions
calculate the probability that the
household agents choose their
preferred land use under
particular circumstances

Characteristics of hou
agent (e.g., age, educ
income); natural land
(e.g., wetness index,
neighborhood charac
land use (e.g., enrich
of land-use types)

PES-adoption Binary logistic function calculates
the probability of whether the
household agents adopt PES
schemes or not based on
particular circumstances.

Characteristics of hou
(e.g., age, educationa
income, etc.); access
conservation policies

a Estimated using regression of species data from Rahayu (2009).
b Data from Rahayu (2009) and Rasnovi (2006).
c ICRAF data (2009e2010).
d Estimated by log-linear regression analysis of 2012 field survey data.
e Tomich et al. (1998, 2004).
household land-use decision making under different policy con-
texts. A forest protection zoning is set at 70% under all scenarios,
suggesting that 30% of the forest near the household agent can be
utilized for household consumption.

1) Business-as-usual (BAU) scenariodunder this scenario, agents
operate on the premise that there is no policy intervention
involved. We observed agent land-use choices for their initial
landholdings and simulated continuously until year 20 using the
current land-use choice probabilities (Table 2) integrated into
agent decision making as biophysical conditions change
dynamically and populations increase.

2) Subsidies (SUB) scenariodthis scenario operates on the premise
that agents are offered initial financial support. Using the cur-
rent land-use practices (i.e., by running the current land-use
choices), the agent assesses if there is enough labor. If suffi-
cient labor is available the Preferred-land-use sub-model (see
Sub-models) will be run to convert land to a new land-use type
(Fig. 3b). For the biophysical context, cloned-rubber seedlings
are used if the land-use choice is monoculture rubber.

3) PES scenariodin this scenario agents operate on the premise
that a conditional eco-certification scheme is offered. First, the
Parameter

Initial value Parameter Default
value

parcel
type (m2)

900 m2 of rubber
agroforest extracted
from ICRAF land-cover
data 2005

Coefficient k:
Young secondary,
Late secondary,
and Forest
Coefficient z:
Young secondary,
Late secondary,
and Forest

1.60a

5.84a

1.66a

0.440a

0.202a

0.424a

m2/ha) Data from Rahayu (2009)
and Rasnovi (2006)

Rubber agroforest basal
area at the equilibrium
state (m2/ha)

41b

e Steady average yield
(dry kg/ha/yr)

1800c

/yr)
(g/ha/yr)

Field survey (2012)
Field survey (2012)
Topographic-driven (GIS)
Field survey (2012)

Elastic coefficient
Elastic coefficient
Elastic coefficient
Elastic coefficient

1.063d

0.093d

�0.031d

0.201d

/yr)

bber trees
planted

Field survey (2012)
Topographic-driven (GIS)
Field survey (2012)
Field survey (2012)

Elastic coefficient
Elastic coefficient
Elastic coefficient
Elastic coefficient

0.954d

�0.750d

0.368d

�0.096d

ICRAF land-cover data
2006

Average carbon
density (Mg/ha) of:
Rubber agroforest
Monoculture rubber
Oil palm
Rice field

62e

46e

31e

1e

sehold
ational status,
attributes

slope);
teristics of
ment factor

Field survey 2012 List of preference
coefficients of the
explanatory variables

Villamor
(2012)

sehold agent
l status,
to

Field survey 2012 List of preference
coefficients of the
explanatory variables

Villamor
(2012)



Table 5
Scenarios and assumed parameters in the LB-LUDAS.

Parameter Scenario

Business-as-usual (BAU) SUB (with subsidies) PES (eco-certification)

Decision-making on farm choice routine Current land-use choice routine Current land-use choice routine and
preferred future land use

Current land-use choices routine and
PES adoption

Rubber price (per kg of dry rubber)c US$ 2.5 US$ 2.5 1) US$ 0.50, or
2) US$ 1 if compliant with the biodiversity
performance indicators

Rubber trees From existing trees Cloned rubber seedling From existing trees
Initial households 1500 individuals or 380 households 1500 individuals or 380 households 1500 individuals or 380 households
Forest protection zoning restrictiona 70% 70% 70%
Population annual growth rate 1.14%b 1.14%b 1.14%b

a Based on the Ministry of Forestry No. P.49/Menhut-II/2008 of August 25, 2008.
b Statistical Record 2003.
c Rubber price was derived Leimona and Joshi (2010) and the 2010 list of rubber prices for the area.
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agent assesses the initial land-use. Then, agents assess whether
to adopt PES or not through the PES-adoption sub-model (see
Sub-models). If an agent adopts PES, the following biodiversity
performance indicators are measured to determine whether the
agent is in compliance (Tata et al., 2007). These performance
indicator measures are generated by two sub-models (e.g.,
Calculate-species-richness (see Sub-models), and Forest-Growth-
Response) (Le et al., 2008):
� at least four different trees species (>10 cm diameter at breast
height or DBH) within a circle with an 8 m radius around a
random starting point within the parcel (with an average of
five observations per parcel);

� if the number of species is less than six, the relative basal area
of the rubber trees is determined, with 2/3 as a threshold; and

� at least one tree with a DBH >40 cm within a 25 m radius
(based on an average of five observations).

A price premium is awarded to agents that meet all of these
conditions. If one of these measures is not met, agents do not
qualify for the price premium. Two PES sub-scenarios were used
according to the prices:

a) An increase of US$ 0.50/kg of dry rubber produced; and
b) An increase of US$ 1/kg of dry rubber produced.

As the objective of the paper is on exploring efficiency of envi-
ronmental programs and the resulting trade-offs from them, and
not on the identification of PES values the sensitivity analysis with
different PES values were not conducted (for model output with
different PES values see Villamor et al. (2013a)).
3.3. Validation

We applied two validation techniques for the LB-LUDAS model:
(1) the indirect calibration (IC) technique (Windrum et al., 2007)
and (2) social validation using the land-use RPG results (Villamor
and van Noordwijk, 2011). The IC technique focused on the pa-
rameters (i.e., specific to agent decisionmodel) drawn from stylized
facts and empirical datasets using the following steps:

Step 1: Identify a set of stylized facts that the modeler is inter-
ested in reproducing;
Step 2: Develop a model based on the empirical evidence
regarding the agents and rules;
Step 3: Use the empirical evidence regarding stylized facts to
restrict the space of parameters and test the statistical regular-
ities; and
Step 4: Identify the causal mechanisms that underlie the styl-
ized facts.

Following these steps, the stylized facts (i.e., current land-use
choice probabilities) derived from the empirical data (step 1 from
Table 2) constituted the current land-use choice sub-models. In this
stage we applied steps for characterizing and evaluating model
performance (Bennett et al., 2013). The (current) land-use choice,
mathematically stated in a multinomial logistic form, is integrated
in both the static and moving phases of the FarmlandChoice routine
(Le et al., 2008) (step 2 from Table 2). To simulate the SUB and PES
scenarios, we used the stylized facts associated with land-use
choice under the conditions ‘if supported by financial in-
vestments or subsidies in the next 5e10 years’ and ‘willingness to
adopt PES,’ respectively (step 3 from Table 2). In this way causal
mechanisms (i.e., time element and decision-making process for
PES adoption) are embedded explicitly. We therefore reconstructed
new decision algorithms that incorporate other stylized facts (see
Table 2 and Fig. 3). Hence, if the FarmlandChoicemodel is simulated
independently, we can expect that each household type would
behave differently. For example, under the scenario of the current
land-use choices, 99% of the Type-2 households may choose rubber
agroforest. If offered financial subsidies in the future, the proba-
bility that Type-2 households will choose rubber agroforest de-
creases by 50%.

The second approach is a form of social validation, where real-
life farmers (who were also the survey respondents) participated
in a land-use RPG exercise (Villamor and van Noordwijk, 2011) with
settings and roles matching the LB-LUDAS model. The RPG exercise
was conducted to deepen our understanding of the system prop-
erties and dynamics that had not been communicated through
interviews and surveys, and to validate the ABM (Castella et al.,
2005; Guyot and Honiden, 2006). Three land-use game boards
were used to represent each of the target villages and allowed
players to make direct changes to land-use/cover according to their
negotiations with actors promoting either conversion or conser-
vation of rubber agroforests. The validation process is two-fold: (1)
the decision rules of the LB-LUDASmodel were refined according to
the observed behavior of the RPG exercise participants, and (2) the
simulated land-use change pattern generated from the LB-LUDAS
model was validated using the land-use change pattern generated
from the RPG (see Section 5.4).
4. Results

We compared the simulation results of the three scenarios ac-
cording to: (1) land-use change, (2) key ES indicators (e.g., species



Table 6
Simulated results in the three LB-LUDAS model scenarios based on key indicators.

Indicators Scenarios

BAU SUB PES (a) PES (b)

Biodiversity
a) Species richness 75% 86% 95% 96%
b) Species loss 25% 14% 5% 4%

Carbon emissions (Mg/ha/yr) 0.5 0.33 0.2 0.1

Agronomic yield
a) Rice field (kg/ha/yr) 426 ± 69 398 ± 81 224 ± 33 227 ± 32
b) Rubber agroforest
(kg/ha/yr)

224 ± 37 378 ± 81 314 ± 69 320 ± 51

c) Monoculture rubber
(kg/ha/yr)

640 ± 220 1120 ± 104 763 ± 20 791 ± 30

PES-adopters 0 0 16% 32%

Note: PES (a) with increase of US$ 0.50; PES (b) with increase of US$ 1.
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richness, carbon emissions, and crop production), and (3) PES
adoption and impact on land value. Table 6 presents an overall
summary of the observed key ES indicators.

4.1. Land-use change trends

The main trends observed in the simulations for the three main
land-use types are summarized in Fig. 4. For monoculture rubber
there was an increasing trend under the BAU and SUB scenarios,
and decreasing trend under the PES scenarios. For rice field there
was an increasing trend under the PES and SUB scenarios, partic-
ularly after year 20. Under the BAU scenario rice field area increased
after year 10, but then declined to the initial area after year 20. For
rubber agroforest there was an increasing trend until year 10 under
both the BAU and SUB scenarios, but this trend reversed after year
10. This reduction may be due to low rubber yields for this cover
type (Table 6). Agents subsequently converted to monoculture
rubber or rice field, especially under the SUB scenario. Another
reason might be that simulated new households (which are
explorative) preferred monoculture rubber since age is one of the
factors affecting the land-use choice (Table 4). Under the PES sce-
nario with a US$ 0.50 per unit increase, there was a decreasing
trend in rubber agroforest area after year 10, whereas under the PES
Fig. 4. Simulated trends of key land-use changes among the
scenario with a US$ 1 per unit increase the trend was decreasing
until year 10, and maintained thereafter.

Under the BAU scenario rubber agroforest had the largest area
during the initial year followed by rice, which matches the land
choice probabilities in Table 2, particularly the baseline scenario.
Likewise, during the initial year under the SUB scenario both rubber
agroforest and monoculture rubber area increased as predicted in
Table 2. Land choice probabilities under the PES scenario were not
possible to determine since decision making is also dependent on
the current land-use and other factors such as access to conserva-
tion interventions (Table 4).
4.2. ES indicators

Our model results found that under the PES scenario, 9% more
tree species could be conserved in rubber agroforests relative to the
SUB scenario and 20%more than the BAU scenario (Table 6). Species
loss could be attributed to the reduction of rubber agroforest area
under the BAU and SUB scenarios (Fig. 4(1) and (2)). Comparing the
SUB and BAU scenarios, around 11% more of local tree species could
be maintained under SUB scenario. Meanwhile, there was an in-
crease in species richness from the slight increase of rubber agro-
forests under the PES scenarios.

In terms of carbon emissions from projected land-use changes,
the lowest annual emissions of about 0.1 Mg/ha/yr were observed
under the PES scenario, particularly with a US$1 per unit increase
(Table 6). This is due to the slight decrease in rubber agroforest
compared to the BAU and SUB scenarios (Fig. 4(3)). Carbon emis-
sions were highest under the BAU scenario.

With regard to crop yields, the average simulated yields for the
three major crops are summarized in Table 6. The average rice yield
under the BAU scenario (426 kg/ha) is substantially higher than
under the PES (224 and 227 kg/ha) and SUB (349 kg/ha) scenarios.
These rice yields are of rain-fed upland rice production in the area,
which is only for household consumption. For yields from rubber
agroforests, the highest average yield was under the SUB scenario
(378 kg dry rubber/ha), while the lowest was under the BAU sce-
nario (224 kg dry rubber/ha). The average yield from monoculture
rubber plantations under the SUB scenariowas highest (1120 kg dry
rubber/ha), compared to the PES and BAU scenarios. This is likely
attributable to the use of commercial variety cloned seedlings in
LB-LUDAS Sumatran land-use dynamics model results.
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monoculture rubber that have higher productivity than the rubber
varieties in rubber agroforests. The average yields from mono-
culture rubber under the PES scenarios were over 100 kg greater
than under the BAU scenario.
4.3. PES adoption and impact on land value

Under the PES scenario the estimated mean portion of house-
holds that adopted the PES schemewas between 16% and 30% of the
total simulated population (Table 6). This suggests that the adop-
tion of PES depends on the price premium amount. The US$0.50 per
unit or 20% increase to the base price was less attractive. This may
bewhy rice field area increased (Fig. 4). Some research efforts in the
same study area have found that when the price of rubber is low,
farmers shifted to rice cultivation and harvesting non-timber forest
products from rubber agroforest (e.g., durian, petai) (van Noordwijk
et al., 2012).

Based on the different agent land-use decision-making pro-
cesses, the potential impacts on the average returns on land in-
vestments for each scenario are summarized in Table 7. Most
investments in monoculture rubber were required during the first
five years, whereas for rubber agroforest they were required during
the first eight years. Afterwards, both of these land-use types
started generating revenue for the households. Under the BAU
scenario the highest discounted net return was estimated for rice
field (US$ 1441/ha) and the lowest was estimated for rubber
agroforest (US$ 190/ha). Under the SUB scenario the highest dis-
counted net return was estimated for monoculture rubber (US$
4050/ha) and the lowest was for rubber agroforest (US$ 289/ha).
For rubber agroforest the highest discounted net return was under
the PES scenario with a US$ 1 increase (US$ 477/ha). This suggests
that the price premium of US$ 1 per unit or 40% price increase will
not surpass the net return from monoculture rubber. This may
explain the slight change in monoculture rubber observed under
the PES scenarios as shown in Fig. 4, where farmers maintained
monoculture rubber. Rice field area increased under both BAU and
SUB scenarios because the net return from rubber agroforest was
Table 7
Discounted net returns over 20 years under the BAU, SUB and PES scenarios for rubber
model.

Years Rice (US$/ha) Monoculture rubber (US

BAU SUB PES BAU SUB

a b

1 115 5 19 �18 �764 �764
2 181 157 17 36 �241 �241
3 114 68 54 66 �167 �167
4 150 103 29 58 �116 �116
5 132 103 44 42 �81 �81
6 149 94 62 34 521 826
7 96 52 32 40 299 749
8 91 67 36 43 346 660
9 87 64 40 40 234 638
10 62 63 37 20 333 544
11 48 45 24 24 245 447
12 44 51 20 21 99 330
13 36 31 21 21 180 257
14 37 28 18 18 63 252
15 22 27 12 10 141 161
16 17 17 8 10 46 162
17 19 18 12 8 112 120
18 11 10 8 8 35 114
19 14 13 7 8 64 86
20 15 8 5 7 35 77

Total 1441 1026 504 497 1382 4052

Note: PES (a) with increase of US$ 0.50; PES (b) with increase of US$ 1.
very low as supported by the mean production yields presented in
Table 6.
5. Discussion

5.1. Multi-dimensional effects of PES

Attempts to decelerate the rate of land conversion in Indonesia
through PES schemes are a big step, however, further assessment of
the dimensional effects would contribute to the policy efficiency of
the environmental program. By linking the financial returns from
the major land-use types to ecosystem services provision and
biodiversity, we could assess the trade-offs. Over a 20-year period
the financial returns from rubber agroforest under the PES scenario
were more competitive than under the BAU and SUB scenarios. In
terms of carbon emission reduction and species richness, the PES
scenarios performed very well relative to the other scenarios.

Our model results explicitly depict the multi-faceted nature of
PES schemes with respect to agro-biodiversity conservation, carbon
emission reduction, and opportunity costs based on local practices
(or livelihoods). Through the eco-certification scheme the oppor-
tunity cost of rubber agroforest becomes competitive with the
other scenarios. Nonetheless, the financial returns from rubber
agroforest under the PES schemes could not compete with other
land uses such as monoculture rubber. Based on the simulation
results, the price premiums were insufficient to match those land
uses. Thus, a low PES adoption proportion (32%) resulted alongwith
continuously decreasing rubber agroforest area (Fig. 4).

While various ecosystem services are not completely defined or
understood due to the limitations of current scientific knowledge,
PES schemes are usually implemented without previously estab-
lishing the causal relationships between land uses and ecosystem
enhancement (Mu~noz-Pi~na et al., 2008). Nevertheless, the long-
term viability of PES schemes may depend on techniques that es-
timate ES performance from observable ecosystem properties (Jack
et al., 2008). Establishing the biodiversity performance criteria (see
Section 2.2) could ensure that biodiversity changes are evaluated
monoculture, rubber agroforests, and rice field land-uses (US$/ha) of the LB-LUDAS

$/ha) Rubber agroforest (US$/ha)

PES BAU SUB PES

a b a b

�764 �764 �316 �316 �316 �316
�241 �241 �100 �100 �100 �100
�167 �167 �69 �69 �69 �69
�116 �116 �48 �48 �48 �48
�81 �81 �33 �33 �33 �33
575 563 �23 �23 �23 �23
474 493 �16 �16 �16 �16
401 421 �11 �11 �11 �11
370 333 75 210 126 153
298 291 51 84 153 135
242 240 59 106 150 237
209 197 50 111 113 150
182 169 29 83 79 92
146 138 36 85 77 78
132 114 28 38 79 52
107 102 23 43 46 49
83 83 20 56 50 56
78 69 23 41 33 39
62 59 14 25 29 26
49 49 19 23 21 27

2039 1951 �190 289 339 477
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meaningfully. In our model, the indicators are based on species
richness and basal area (calibrated using plot-based and age-
specific inventories) of existing rubber agroforest in the study
area (as simple proxies). These were captured by the LB-LUDAS
model as pattern and process, and used to estimate biodiversity
and carbon stocks for payments in the form of a price premium.

Furthermore, engagement with the households could link on-
the-ground practices with the quantification and valuation of ES,
thus reducing uncertainty related to individual land-management
decisions (Villamor and van Noordwijk, 2011). The results also
suggest that the conditional eco-certification scheme, based on the
proposed design (i.e., biodiversity performance targets) is appro-
priate for the rubber agroforest landscape context. However, the
market for eco-certified rubber latex is still immature and eco-
certification for rubber latex needs to be recognized and pro-
moted by the certification bodies (Bennett, 2009).

5.2. Socialeecological interactions and adaptation

One of the main challenges to the assessment of ES trade-offs
lies in the complexity of ecosystem dynamics where human and
natural processes are coupled (Cumming, 2011). In our model, we
show that socio-economic factors influencing the land-use prefer-
ences and agent behavioral schema interact in the ecological sys-
tem and would later affect the environmental dynamics in a
collateral way (Scholz, 2011). Though there are few models that
explicitly show feedback loops operating in socio-ecological sys-
tems (Le et al., 2012), in the context of the PES scheme we could
clearly differentiate the primary and secondary feedback loops
operating in the simulation model (Fig. 5). In socio-ecological sys-
tems primary feedback loops involve human agent activities in
response to environmental conditions, with a retroactive effect on
agent decisions in a regular short-term manner. This form of
feedback updates the decision variables, but does not alter the
agent decision schema. The secondary feedback loops are defined
by human-driven cumulative changes in the socio-ecological con-
ditions on greater spatial and temporal scales (unintentionally or
intentionally), leading to the reframing of the agent behavioral
schema, which often occurs over a delayed term (e.g., some operate
over decades). This refers to profound co-adaptations in socio-
ecological systems (Le et al., 2012; Liu, 2007; Scholz, 2011).

In our simulations, the primary feedback loops are direct actions
made by household agents to their landscape (i.e., harvesting
rubber latex or rice) and the annually updated environmental im-
pacts (inner cycle between actors/agents and land-use/cover
change, represented by the dark gray arrow in Fig. 5). There are
Fig. 5. The primary feedback loop is described by the inner cycle between the actors/age
through the PES and conditional ES incentives (B2) (modified from van Noordwijk et al., 20
two secondary feedback loop pathways. The first pathway, which
our model inherited from the mechanism encoded in the existing
LUDAS framework, captures the cumulative effects of annual
human-induced socio-ecological changes on household decision-
making mechanisms. This long-term rebound effect is likely
inherent to the framework (Le et al., 2012). The second pathway is
formed by the PES and conditional ES reward (B2 demonstrating
the inner cycle in Fig. 5). Under the PES scenario, an additional sub-
model was added to the FarmlandChoice routine, in which agents
will decide whether to adopt PES or not (Fig. 3a). In the simulation,
not all of those agents adopted PES initially, with some agents
requiring a few more years to adopt. PES participants maintained
rubber agroforests, which in turn affected the perception of
neighboring agents through the neighboring effect brought about
by the increasing local enrichment factor of rubber agroforest
(Verburg et al., 2004).

Given the introduced PES policy, household agents tended to
maintain rubber agroforest in order to receive higher payments,
resulting in profits or improvement of their socio-economic status
(Fig. 5), while also enhancing biodiversity and carbon sequestra-
tion. This policy-induced secondary feedback loop should provide
the basis to proactively regulate the long-term adaptive manage-
ment of agroforest landscapes with the objective of mitigating
climate change.

In the light of environmental literacy, this policy-induced sec-
ondary feedback loop could relate to a secondary feedback loop,
which involves learning: “One is called secondary feedback loop
learning: changing the internal model because of an awareness of the
changing feedback characteristic of the environment … A special case
of learning is when the change of the environment at time t0 þ T is
caused by human system at time t …” (Scholz, 2011, p. 434). In the
case of the PES scenario, households did not cut down forest or
establish new farming areas. A contributing factor to the conser-
vation of rubber agroforest in the area is the local labor shortage
(Gouyon et al., 1993). Adding incentives to existing land uses for the
benefit of biodiversity conservation and carbon sequestration
would require a shift in household perceptions and goals, which
involves learning and greater conservation awareness.

When using a modeling framework like ABM to better under-
stand dynamic socio-ecological systems, the observed land-use
change trends simulated may not reflect the observed land-use
choice probabilities (as generated by household survey). The
reason behind this is that multitude of the social and ecological
variables or factors and processes affecting and interacting on the
landscape scale. For others this may be a surprise, but this is a
characteristic of socio-ecological system interactionsdthe
nts and land-use/cover changes (dark arrow) and the outer secondary feedback loop
11).
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emergent property or phenomenon (Section 3.1.2). Emergence is
not the sum of the many factors and processes affecting the system,
but rather it is a product of the interactions. As a consequence, it is
hard to track the process in detail. Thus in this study the use of
other tools such as participatory mapping and RPG were essential
to justify and support the emergent property resulting from the
simulation. A similar observation was made by Washington-
Ottombre et al. (2010) when using both RPG and ABM.

5.3. Policy implications and model application

Based on the above observation, PES could contribute to sus-
tainable development policy design before markets appear or are
created that place value on environmental considerations (Stenger
et al., 2009). The social welfare value of policy intervention is
reduced if households fail to adopt practices that generate greater
benefits than costs. PES could be evaluated based on the type of
payments provided by the schemes (Engel et al., 2008). In the
simulation a price premium was assigned to PES adopters that met
the biodiversity criteria. However, the level of adoption was low.
There are three possible reasons for the observed low adoption
levels: (1) the yields from rubber agroforest are already low, (2) the
income generated by the price premiums was lower than the other
land uses, and (3) the proposed biodiversity performance indicators
are hard to meet. The first two of these reasons are addressed in this
paper, that due to low yields from rubber agroforest eco-certification
schemes for conserving rubber agroforest be evaluated. To address
the third reason there is a need to establish biodiversity performance
indicators that are both meaningful and that are understood and
achievable by participating communities. According to Jack et al.
(2008), the overall viability of PES schemes is determined by the
preferences of all relevant stakeholders. Thus, proposals for scaling
up PES schemes should consider the factors affecting the decision to
adopt or participate in PES schemes (e.g., price premium). With the
current interest in Reducing Emissions from Deforestation and
Degradation plus (REDDþ) schemes to achieve emission reduction
along with biodiversity conservation (Minang and van Noordwijk,
2012) and high carbon-stock development pathways (Minang
et al., 2012), the predicted effectiveness of an eco-certification
scheme for biodiversity-friendly rubber production is noteworthy.

Comparing the simulated yields to those in the literature, the
rice yield was far below commonly reported yields, however, most
available literature describes irrigated rice production. In ourmodel
rice production was parameterized based on the native (rain-fed)
rice cultivar in the area, which is typically cultivated with only
limited or without agro-chemical inputs. For rubber production the
simulated yields are in conformity with those reported in the
literature (Gouyon et al., 1993). In terms of yields frommonoculture
rubber, there are literature examples with better productivity and
profitability under ideal conditions, however, in reality production
often fails to achieve predicted yields due to the inability to achieve
ideal field conditions, which can also be captured in the model
simulation.

We applied a multi-agent simulation model (LB-LUDAS) to
answer the question “How would land-use change based on house-
hold preferences, behaviors, and land-use decisions and what would
be the subsequent impacts on the provision of ecosystem services?”
However, we only partially addressed this question due to limita-
tions of the study such as: (1) estimation of species richness was
limited to the rubber agroforest land-use type to reduce the run
time of the simulation; and (2) because of the slow simulation run
we had to limit some functions such as connectivity and species
richness calculations for other land-use types.

Integrating the human-agent preferences and land-use de-
cisions heterogeneously (beyond economic rationality assumption)
has been accomplished in several ABM applications that explored
the impacts of PES schemes on land-use change (Murray-Rust et al.,
2011; Sun and Müller, 2013). However, understanding of the ES
trade-offs from land-use decisions as emergent property is not well
represented. A similar work has been done using an agent-based
model (AgriPolis) to assess the impacts of agricultural policy on
land use and biodiversity (Brady et al., 2012). Though both studies
share similar features (i.e., over-all research objective and the use of
the species-area relationship as a biodiversity indicator), the
distinctive aspects presented in this work are: (1) our application of
bounded rationality for better representing household agent deci-
sion making, (2) our calibration of the SAR parameters using a
standard experimental approach with field-sourced data (i.e., Es-
timateS; Colwell, 2009), (3) the explicit representation of ES
tradeoffs, and (4) validation.

5.4. Land-use RPG: social validation

The RPG approach has been widely combined with ABM model
development (Barreteau et al., 2001; Castella et al., 2005; Etienne,
2003). The strength of combining RPG is to refine evidence-
driven ABMs by providing realistic descriptive specifications of
individual behavior and social interactions (Le Page et al., 2012;
Moss, 2008). We compared the land-use results from the game
exercise with survey respondents to the simulated land-use out-
comes from the LB-LUDAS model. From the RPG, there was a pos-
itive response to the PES negotiator, thus the players maintained
their rubber agroforest and forest patches, and there was almost no
conversion to monoculture rubber and oil palm. All of the financial
bids by external agents to establish oil palm cultivation in the
village were rejected despite indications of declining income
(Villamor and van Noordwijk, 2011). Based on this observed game
behavior, we believe that the land-use change pattern simulated by
the LB-LUDAS model (Fig. 4(3)) is consistent with the land-use
pattern resulting from the RPG exercise (Villamor et al., 2013b;
Villamor and van Noordwijk, 2011), which suggests convergent
validity between the two models (Yu, 2003).

6. Conclusions

The use of the ABM framework (LB-LUDAS model) was found to
be suitable for exploring and better understanding ES trade-offs.
This is necessary for assessing conservation policies such as PES
schemes that have multiple objectives, while integrating the
decision-making processes and preferences of household agents.
The simulation results demonstrate that land-use practices such as
rubber agroforests, if coupled with appropriate management re-
gimes or policies like PES, could synergize ES while supporting
household livelihoods. The challenge is to search for sustainable
land-use practices and appropriate strategies or designs that better
support synergy among ES.

However, there are limitations in the study that we wish to
address in future efforts, such as the inclusion of other pertinent ES
(e.g., water quantity and soil fertility) and agent behavior reflecting
rural interdependencies. Some other emergent properties (i.e.,
learning and adaptation) emanating from the interaction of the
social and biophysical systems also need further analysis. It is also
important to further investigate appropriate PES modalities that
would increase farmers' adoption for environmentally friendly
land-use practices.
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