

Assessing and mapping barangay level social vulnerability of Tacloban City and Ormoc City to climate-related hazards

Luigi Toda^{1,4} · Justine Ravi Orduña^{1,5} · Rodel Lasco^{1,2} · Carlos Tito Santos^{1,3}

¹ Oscar M. Lopez Center for Climate Change Adaptation and Disaster Risk Management Foundation, Inc. ² World Agroforestry Centre ³ Faculty of Sciences, University of Lisbon ⁴ Australian National University ⁵ University of the Philippines Diliman

Received: 16 April 2015 / Accepted: 20 November 2015 / Published online: 29 December 2015

Abstract

The destruction left by Typhoon Haiyan in the Philippines highlighted not only the exposure of the country but also the underlying vulnerability of barangays (villages) to climate-related hazards. This study used geographic information system (GIS) tools to characterize social vulnerability to climate-related hazards of barangays of Tacloban City and Ormoc City using a modified social vulnerability index (SoVI). The SoVI used socioeconomic data mainly drawn from census and was computed from 11 indicators influencing sensitivity, adaptive capacity, and exposure. Social vulnerability varies spatially across the study areas, where Barangay 88, said to be the worst-hit barangay in Tacloban, and Barangay Naungan in Ormoc, recorded the highest vulnerability scores. Demographic and socioeconomic shifts are likely in both cities, given the population growth and increasing density of settlements already concentrated in hazard-prone barangays. Measures to reduce vulnerability should be a local priority and would require political will for community-based climate action, disaster risk reduction and management, and risk-sensitive land use development. This study provides an approach for assessing social vulnerability using available census and climate-related hazard data to determine areas for intervention at the barangay level.

Keywords: social vulnerability · climate-related hazards · geographic information systems (GIS) · vulnerability assessment · Haiyan

Doi: http://dx.doi.org/10.18783/cddj.v001.i01.a04

Corresponding Author: Luigi Toda Oscar M. Lopez Center for Climate Change Adaptation and Disaster Risk Management Foundation, Inc. Australian National University igitoda@gmail.com

Introduction

Hazards that cause vulnerability have unequal distribution of impacts on a population (Zahran, Brody, Peacock, Vedlitz, & Grover, 2008) and across geography (Cutter & Finch, 2008) due to factors other than forces of nature, such as social systems and power (Wisner, Blaikie, Cannon, & Davis, 2003). Considering the characteristics or the conditions of social processes, economic systems, and power relations which render people susceptible to damage or injury (Cannon, 1994; Wisner et al., 2003), the concept of vulnerability has evolved over time, addressing one of the missing links in how to measure social vulnerability (Cutter & Corendea, 2013).

Vulnerability is the characteristic of a system that refers to its susceptibility to the negative impact of a natural hazard (United Nations International Strategy for Disaster Reduction, 2009) or the adverse effects of climate change (Intergovernmental Panel on Climate Change, 2007); or how that system's ability to prepare for, respond to, and recover from such hazards and adverse effects is affected. Accordingly, disaster impacts are more experienced by communities with the most vulnerable populations, rampant poverty, and least political influence (Asuero et al., 2012).

Social vulnerability provides an understanding of the factors that make some communities more susceptible to the impacts of disasters and of their capacity to recover (Cutter, Boruff, & Shirley, 2003). Vulnerability varies because natural environments, social structure, and housing differ spatially (Uitto, 1998). Accordingly, social vulnerability also varies across geography (Cutter & Finch, 2008) and across many levels of interaction (e.g., individual, community, regional, local) (Thomas, Philipps, Lovekamp, & Fothergill, 2013). Changes in an area's socioeconomic and demographic characteristics, such as population increase due to rural-to-urban transition, brings a certain pattern of exposure to hazards on the changing landscape and the built environment, particularly along coastal areas (Cutter, Johnson, Finch, & Berry, 2007). There have been attempts to incorporate vulnerability metrics at different subnational spatial scales and sub-county units (Cutter & Finch, 2008) such as the model developed by Yusuf and Francisco (2009) to measure sub-national vulnerability to climate change in Southeast Asia.

Typhoon Haiyan (local name Yolanda) is considered the most destructive typhoon ever recorded in the Philippines. It hit the country in November 2013, leaving over 6,300 dead, 1,061 missing, and 28,689 injured and affecting 12,139 barangays, 44 provinces, 591 municipalities, and 57 cities (National Disaster Risk Reduction and Management Council, 2014). Such devastation highlighted the underlying vulnerability of the country, particularly those living near natural hazards and those with low socioeconomic status. Two years after the typhoon struck, recovery and rehabilitation efforts in affected areas are moving at a slow pace. Most of the displaced populations are still living in temporary shelters where exposure to other forms of hazards may still be likely. The disaster did not only challenge local capacity to face critical pre- and postdisaster issues, but it also put to question the country's social, economic, and even political structures, the very foundation of sustained, if not lessened, vulnerability.

This study attempts to assess the extent to which Tacloban City and Ormoc City are vulnerable to climaterelated hazards by measuring the social vulnerabilities of their barangays. The social vulnerability index (SoVI) was built on available and recent barangay-level datasets classified into sensitivity, adaptive capacity, and exposure, then measured using statistical approaches and mapped using geographic information systems (GIS).

Materials and Methods

Scope and Limitations

The geographical scope of the study covers the barangays of Tacloban and Ormoc in Leyte Province, coastal cities which were heavily affected by the impacts of the Typhoon Haiyan (Figure 1).

Figure 1. Location map of study sites.

Typhoon Haiyan had a devastating impact on the cities of Tacloban and Ormoc where most of the fatalities and damage occurred due to storm surge and wind. In particular, the effects in Tacloban were aggravated because the coastal area is below sea level and has many key public infrastructures such as schools, hospitals, and private residences. Tacloban has had an average of 2.3 typhoons per year in the last 50 years, and is now considered as among the Philippines cities that are most vulnerable to climate change (WWF & BPI, 2013).

The mapping extent is barangay level, with raw scales of 1:50,000 for flood and landslide hazard maps and

1:25,000 for storm surge maps. However, a careful recognition of the complexity of integrating hazard datasets of varying scales used to calculate areas per level of hazard susceptibility with socioeconomic data is required in the use and interpretation of the vulnerability maps. In addition, the vulnerability maps do not represent the absolute and actual vulnerability of barangays due to scarcity of other important indicators available at the barangay level. However, the measurement of relative vulnerability among barangays allows for informed interventions aimed at reducing vulnerability.

Moreover, there may be discrepancies on the barangay boundaries between the maps generated by the study and the boundaries Tacloban City currently uses. During the course of data gathering, the available shapefiles were still based on the old city boundaries despite the fact that the city already uses a different boundary configuration on the ground. This study opted to refer to these outdated shapefiles because the census data and other local reports are still based on them.

Construction of Social Vulnerability Index (SoVI)

The first step in measuring the social vulnerability of barangays was to identify relevant indicators from existing knowledge and literature on social vulnerability. All dimensions of vulnerability were assessed using GIS with respect to the susceptibility of the barangays to climate-related hazards, such as landslide, storm surge, and flood (Figure 2), to classify the level of vulnerability of barangays.

Secondary data used included National Statistical Coordination Board (NSCB) 2010 demographic and employment data, GIS vector climate-related hazard datasets from the Yolanda Rehabilitation Scientific Information Center (YoRInfo Center), and Community Based Monitoring System (CBMS) 2011 data on households living in makeshift houses (CBMS, 2011, NSCB, 2010, NSCB, 2012, NSO, 2007, NSO, 2010).

The SoVI per barangay (Table 1) was derived using indicators representing exposure, adaptive capacity, and sensitivity adopted from the Economy and Environment Program for South East Asia (Yusuf & Francisco, 2009), focusing on generally accepted aspects of social vulnerability as proposed by Cutter et al. (2009). The sub-indicators under each major component were given equal weights relative to the number of indicators in that component. This balanced weighted approach (Hahn, Riederer, & Foster, 2009; Sullivan, Meigh, & Fediw, 2002) was used due to the arbitrary relationships among different indicators. Thus, the components of vulnerability (Table 2) were assessed at the scale of 0 to 1 with equal weighting given to all associated subindicators.

Table 1. List of vulnerability components, indicators and sub-indicators used for computing barangay SoVI.

sub-mulca	lors used	tor compu	ting bai	angay	50 V I.	
Indicators	Major component/ Factor	Sub-indica classification	tors and n/ranking	Unit	Functional relationship to vulnera- bility	Source
Unemployment	Sensitivity	Proportion of unemployed persons in the labor force (15 y.o. and above)		%	1	NSCB
Population	Sensitivity	Population		pop/ha	\wedge	NSCB
at risk	Sensitivity	density Proportion of elders		%	Ŷ	NSCB
	Sensitivity	(>65 y.o.) Proportion of children (0-5		%	\uparrow	NSCB
	Sensitivity	Proportion of persons with disabilities		%	↑	CBMS
	Sensitivity	Proportion of informal settlers		%	↑	NSCB
Povorty	Adaptiva	Povorty				NSCP
roverty	Capacity	incidence			1	INSCR
Climate induced hazards	Exposure	Landslide susceptibility	Very high landslide	ha	↑	
			bility High landslide suscepti-	ha		UP
			bility Moderate landslide suscepti-	ha		DREAM YoRInfo Center
			bility Low landslide suscepti-	ha		
	Exposure	Flood susceptibility	Very high flood suscepti- bility	ha	↑	
			High flood suscepti-	ha		UP DREAM
			bility Moderate flood suscepti-	ha		YoRInto Center
			bility Low flood suscepti-	ha		
		Storm surge susceptibility	bility High storm surge suscenti-	ha	↑	
			bility Moderate storm surge suscepti-	ha		UP DREAM YoRInfo Center
			bility Low storm surge suscepti- bility	ha		
Indicators	Major component/ Factor	Sub-indicators cation/ra	and classifi- nking	Unit	Functional relationship to vulnera- bility	Source
Housing materials	Exposure	Proportion of HH living in makeshift houses		%	1	CBMS

Abbreviations. NCSB = National Statistical Coordination Board; CBMS = Community Based Monitoring System; UP DREAM YoRInfo Center = University of the Philippines Disaster Risk and Exposure Assessment for Mitigation, Yolanda Rehabilitation Scientific Information Center; HH = household

Table 2.	Categorization,	description,	and sources	of selected
sub-indic	ators (mostly a	dopted from	Cutter et al.	, 2003]).

Indicators (Major Components)	Sub-indicators	Concept and description	Sources
Unemployment (Sensitivity)	Unemployed persons in the labor force	Employment loss	Mileti, 1999
Population at risk (Sensitivity)	Population density Elders children	Population growth/ density Age spectrum extremes Special needs populations	H. John Heinz III Center for Science, Economics, and the Environment, 2000; Cutter, Mitchell, & Scott, 2000; Morrow, 1999; and Puente, 1999 Cutter et al., 2000; O'Brien & Mileti, 1992; Hewitt, 1997; and (Ngo, 2001 Morrow, 1999 and Tobin & Ollenburger, 1992
	Persons with disability	Special needs populations	H. John Heinz III Center for Science, Economics, and the
	Informal settlers	Renters/informal settlers	Environment, 2000 and Platt, 1991
Poverty (Adaptive capacity)	Poverty incidence	Socioeconomic status	H. John Heinz III Center for Science, Economics, and the Environment, 2000; Burton, Kates, & White, 1993; Wisner et al., 2003; Peacock, Gladwin, & Morrow, 1997; Hewitt, 1997; Puente, 1999; and Platt, 1991
Climate induced hazards (Exposure	Flood Storm surge Landslide	Susceptibility to floods, storm surges and landslides	Balica, Wright, & Meulen, 2012; Cannon, 1994; and Hammill, Bizikova, Dekens, & McCandless, 2013
Housing materials (Exposure)	Households living in makeshift houses	Housing and the built environment	Bolin & Bolton, 1986; Bolin & Stanford, 1991; Godschalk, Brower, & Beatley, 1989; Mitchell, Abdel- Ghaffar, Gentry, Leatherman, & Sparks, 1986; and White & Haas, 1975

The indicators used and prescribed by Cutter et al. (2009) in their study were modified in this study based on the context of the study areas and the availability of data. A SoVI was constructed with the same indicators as that of Cutter's but the sub-indicators were redeveloped to fit the situations and conditions in the study areas. These sub-indicators were chosen to ensure that the units and sources of data are consistent for standardization (Figure 2).

Indicators were normalized to a value between 0 and 1, multiplied by the assigned relative weights to generate the normalized indicator scores (I_i) . These normalized indicator scores (I_i) were combined to generate the normalized scores of sensitivity (S), adaptive capacity, (AC) and exposure (E). The maximum and minimum values of the barangays were used to convert the indicator to a normalized index so it could be incorporated into the components of the SoVI. For units such as the 'proportion of unemployed persons in the labor force (15 years old and above)', the minimum value and the maximum value were set at 0 to 100, respectively, which represent percentage, and were standardized in a scale from 0 to 1.

The scores of the components were then multiplied equally by 0.33 and added altogether for the SoVI which ranges from 0 to 1, and classified into three classes using natural breaks (Jenks) method in GIS. Features are divided into classes whose boundaries are adjusted where there are relatively huge differences in the data values, such that high values for the index imply high vulnerability, moderate values imply moderate vulnerability and low values imply low vulnerability. The indicators were normalized using the methodology employed to calculate the Human Development Index (United Nations Development Programme [UNDP], 2014). Because all indicators have functional relationship with vulnerability, normalization was calculated as follows:

$$I_{i} = \frac{X_{i} - MinX_{i}}{MaxX_{i} - MinX_{i}}$$
(1)

where X_i is the actual value, $MinX_i$ is the minimum value, and $MaxX_i$ is the maximum value of the indicator.

The ranks of certain indicators and sub-indicators (e.g., 'area of level of hazard susceptibility') were assigned to values arranged in ordinal numbers which correspond to weights that add up to 1 (100%). The area per level of susceptibility of each hazard was calculated using calculate geometry function of ArcGIS 10.2.

surge vulnerability.	signment of ordina	ll weights for storm
Storm surge susceptibility	Rank relative to vulnerability	Ordinal weight
High susceptibility	1	0.5
Moderate susceptibility	2	0.33
Low susceptibility	3	0.167
	Total	1

Ordinal weight is computed as:

$$Wr = \frac{r}{\sum_{k=1}^{n} r}$$
(2)

where r is the rank, n is the number of ranks, and k is 1. SoVI was then calculated as follows:

$$SoVIb = WbSb + WbACb + WbEb$$
(3)

where b is the barangay, S is sensitivity, AC is adaptive

capacity, and E is exposure; such that barangay b equals the equally weighted values of S, AC, and E. The weight of each major component (W_{Ci}) , where C is one of the major components, indexed by i, is measured by 1 over the number (n^{C}) of the major components, which is 0.33 (Table 3).

$$W_{c}i = 1/n^{c} \tag{4}$$

The same approach was used to calculate the weights (W_{sc}) of the sub-indicators (Table 3).

$$W_{sc} = 1/n_s i \tag{5}$$

Table 4. Weights of sub-indicators.						
Major Components	Weight of major components $(W_c i)$	No. of indicators $(n_s i)$	Weight of sub- indicators $(W_s i)$			
Sensitivity	0.33	6	0.17			
Adaptive Capacity	0.33	1	0.33			
Exposure	0.33	4	0.25			

$$S = f(U, PAR) \tag{6}$$

where U is unemployment and PAR is population at risk

$$AC = f(Pov) \tag{7}$$

where Pov is poverty

$$E = f(CH, HM) \tag{8}$$

where CH is climate-induced hazards (landslide, flood and storm surge) and HM is housing materials

Results and Discussion

From the identified indicators, the social vulnerabilities of the barangays were evaluated and ranked. These indicators have sub-indicators that could determine the characteristics of a particular barangay that make it more vulnerable to disasters relative to other barangays. For instance, in Tacloban City, the most socially vulnerable barangay has the demographic and socioeconomic characteristics that make it more sensitive to climaterelated hazards: it is the most populated, it is highly exposed due to its location, and it has the least adaptive capacity due to its high poverty incidence. Therefore, its social vulnerability score is the highest among all barangays in Tacloban.

In the case of Ormoc City, the barangay that got the highest social vulnerability index is the barangay most exposed to climate-related hazards and also has the highest number of population at risk. However, unlike in Tacloban, the SoVI scores of the barangays in Ormoc do not have significant differences. Ormoc City is geographically more exposed to hazards than Tacloban City. A number of barangays in Ormoc are located along the shore and a number of those are prone to riverine flooding. Furthermore, the remaining parts of Ormoc are the rural areas whose populations are dependent to fishing and planting—livelihoods at risk to disasters. Thus, all barangays are almost equally vulnerable to disasters.

Tacloban City

Based on the computed vulnerability, Barangay 88 is consistently highest in all factors of vulnerability, recording a large differential vulnerability value relative to other barangays. The overall social vulnerability of every barangay is determined by its respective sensitivity, exposure, and adaptive capacity indices. The values were classified into the clusters of low, moderate, and high (Table 5). Tacloban yielded a value of 6.52%, or 9 of its barangays with high vulnerability index. Among these barangays, Barangay 88 got the highest index of 0.66792 (Table 6), almost twice as high as the second highest, Barangay 99 (Diit), with the next highest vulnerability index of 0.39874. Barangay 88 consistently got the highest index for all the indicators whereas Barangay 99 consistently got high indices.

Barangay 88 is located in San Jose area in the peninsula facing San Pedro Bay (Figure 2). It is where Daniel Z. Romualdez (DZR) Airport is located and according to the interviews and other accounts, the most devastated barangay during Typhoon Haiyan. The barangay was practically washed out, the airport included, when the typhoon hit. Barangay 88 is a highly-urbanized, densely populated barangay with a number of commercial establishments within the residential areas. Most of its former residents were fisherfolks dependent on San Pedro Bay for income.

Barangay 99 is located in the central part of the City. It has the highest unemployment rate and the most number of persons with disabilities among all the barangays. It is facing the Samar Island in the east and is thus at lower risk to storm surges relative to Barangay 88, but has Tigbao River connected to San Juanico Strait, making it as flood-prone as Barangay 88.

Table 5. Range of values for sensitivity, adaptive capacity, exposure, and overall social vulnerability for Tacloban City.

	S	AC	Е	V
Low	0.00148-	0.00000-	0.00328-	0.00749-
	0.02870	0.03753	0.02372	0.09772
Moderate	0.02975-	0.04012-	0.02542-	0.09772-
	0.08384	0.10784	0.05634	0.24304
High	0.08769-	0.05694-	0.05833-	0.24304-
	0.20234	0.33000	0.13559	0.66792

Among the 51 barangays with moderate vulnerabilities, only Barangay 71 (Naga-Naga) has high sensitivity and exposure, while the rest merely have high indices on exposure. Barangay 71 is a densely populated coastal community near Anibong District where Barangays 68, 69, and 70 are located. The latter barangays also have moderate vulnerabilities computed from their high exposure indices and moderate sensitivity and adaptive capacity indices. Anibong District has several coastal communities with a high number of houses on stilts over the waters. It was also where the 8 cargo vessels were swept inland by the storm surges brought by Typhoon Haiyan.

More than half or 78 of the total barangays have low vulnerability (Figure 3). These are mostly the barangays in the downtown area and a few small communities in the outskirts of the city.

Figure 2. Social vulnerability, sensitivity, adaptive capacity, and exposure maps of Tacloban City, per barangay.

Table 6. Barangay in Tacloban City with the highest values for sensitivity, adaptive capacity, exposure, and overall social vulnerability.

	Barangay	Score
Sensitivity	Barangay 88	0.20234
Adaptive capacity	Barangay 88	0.33000
Exposure	Barangay 88	0.13558
Social vulnerability	Barangay 88	0.66792

Sensitivity

The proportions of unemployed persons in the labor force (15 years old and above), informal settlers households, vulnerable sectors, and the population density were considered in measuring sensitivity. These proportions were normalized then ranked to assess the sensitivity among the barangays. Out of the 138 barangays of Tacloban City, 13 fell within the range of 'high sensitivity' (Figure 4). These are among the most populated barangays with a high number of informal settlers, according to the data from the CBMS. Barangay 88 has the highest sensitivity with 0.202469. It consistently has the highest number of population at risk and unemployed. The increasing number of population during daytime and the concentration of settlements in Tacloban can be attributed to the series of migrations from neighboring towns for economic reasons. Furthermore, fish vendors and other informally-employed residents were rampant in the barangay because of the coastal location of the barangay.

About 50 barangays have moderate sensitivity to climaterelated hazards (Figure 4). Several of these barangays are along the coast with many informal settlements. The remaining 75 barangays have relatively low sensitivity. These are mainly the upland barangays whose land areas are mostly occupied by the mountains rather than communities. The barangay with the least sensitivity is Barangay 15, located in the highly commercialized downtown area.

Exposure

Due to their natural and built environments, 21 barangays were highly exposed to climate-related hazards (Figure 5). These barangays scored between 0.05833 to 0.13559, with Barangay 88 scoring the upper limit. This could be attributed to the high susceptibility of these barangays to particular hazards and to the structure of their houses which could not provide protection during disasters. Similarly, 50 barangays were moderately exposed. These are the barangays adjacent to those that were identified to have high exposure score. The remaining 67 barangays have low exposure; mostly in the downtown area with Barangay 16 having the lowest exposure score. Tacloban downtown is a highly built-up, commercialized area and most of Barangay 16 is in the heart of it. Prior to Haiyan, building codes across all development zones and building types were not enforced and standard designs for houses and public infrastructure could only withstand winds of 200 kph. Most public infrastructure and critical facilities used as evacuation centers such as the Astrodome are located in hazard-prone areas.

Figure 5. Landslide, flood, and storm surge susceptibility maps of Tacloban City.

Adaptive Capacity

Barangay 88, having 54.37% of its households earning below the poverty threshold, scored an adaptive capacity index of 0.33, recording a large differential value compared to the 9 other barangays with high adaptive capacity index. Barangay 103 got the next highest index with 0.16435, almost half of that of Barangay 88. These barangays were spatially scattered showing that poverty in the city is not concentrated in certain areas. The index for moderate exposure is within 0.04012 to 0.10784, with 43 barangays falling within the range. The remaining 86 barangays whose index is low have the lowest proportions of households with income below the poverty threshold. The barangays with the lowest indices are Barangays 109-A, 77, 80, 109, 17, 62-B, and 16. The land uses among these barangays are mostly commercial and institutional, with only a few residential areas.

Ormoc City

Typhoon Haiyan did not directly hit Ormoc but still brought strong winds that caused damage and deaths. Ormoc is generally vulnerable to disasters due to its exposure to natural hazards, not to mention that the livelihoods of many residents are dependent on the environment. Although Ormoc (Figure 6) has a higher proportion of barangays (8.18%) with high social vulnerability score (Figure 7), its barangays have lower social vulnerability scores compared to those in Tacloban (Table 7). The highest is that of Naungan with 0.32726 and the differential value between the index of Naungan and that of the second highest (Cogon Combado) is not very significant (Table 8). Those with high overall social vulnerability are those with high sensitivity indices, indicating that population at risk is the main factor contributing to their vulnerability. Bagong Buhay is the only barangay whose sensitivity is high but has moderate overall social vulnerability index. On the other hand, Lao has moderate sensitivity, but has high adaptive capacity and exposure indices, contributing to a high overall social vulnerability.

Table 7. Range of values for sensitivity, adaptive capacity,exposure, and overall social vulnerability for Ormoc City.					
	S	AC	Е	V	
Long	0.00067-	0.00000-	0.00237-	0.00574-	
	0.03649	0.00766	0.02432	0.06546	
Moderate	0.03650-	0.00766-	0.02483-	0.06608-	
	0.09972	0.02143	0.05260	0.16831	
High	0.10481-	0.02265-	0.05325-	0.17656-	
	0.19014	0.06437	0.11370	0.34983	

The barangays with moderate social vulnerability have indices ranging from 0.06788 to 0.16252. These are 49 barangays whose residents are engaged in smalltime commercial fishing and/or subsistence farming, acquiring irrigation from the tributaries of Anilao and Malbasag Rivers. Most of these barangays also have high exposure and high adaptive capacity indices (Figure 8). The 52 barangays that have low social vulnerability indices are mostly the upland barangays that are sparsely occupied and the poblacion (town center) barangays that are commercialized. The least vulnerable among them is Barangay 5, which is a commercial block along Real Street in Ormoc City Proper.

Table 8. Barangays in Ormoc City with the highest values for sensitivity, adaptive capacity, exposure, and overall social vulnerability.

	Barangay	Score
Sensitivity	Cogon Combado	0.19014
Adaptive Capacity (Lack)	Naungan	0.06437
Exposure	Naungan	0.08879
Vulnerability	Naungan	0.32726

Figure 6. Social vulnerability, sensitivity, adaptive capacity, and exposure maps of Ormoc City, per barangay.

Figure 7. Number of barangays in Ormoc City per degree of vulnerability.

Sensitivity

Out of the 9 barangays with high sensitivity, Barangay Cogon Combado is the area most sensitive to disasters because it is the most densely populated barangay in Ormoc City; it scored 0.19014. The other barangays with high sensitivity are Tambuilid, Naungan, Linao, Ipil, Punta, Libertad, Bagong Buhay, and Liloan, which are either coastal communities or barangays with large population.

There were 39 barangays with moderate sensitivity. Barangay 14 registered the lowest sensitivity sub-index among the 62 barangays which have low sensitivity index. This is likely due to the low numbers of population at risk because Barangay 14 is in the poblacion (town center) district and not a residential area. All the poblacion barangays have low sensitivity.

Exposure

Past disasters could validate that Ormoc is at risk to natural hazards such as flooding and landslide (Figure 9). Thirty barangays have high exposure, with Barangay Naungan having the highest with 0.08879. As a coastal community also traversed by Jaoban River, it has very high susceptibility to flooding and is most likely to be affected by storm surges. The other barangays with high exposure index are its neighboring barangays and 7 poblacion barangays which are near Anilao River. The remaining 43 barangays have moderate exposure index and the 37 barangays have low.

Figure 9. Landslide, flood and storm surge susceptibility maps of Ormoc City.

Adaptive Capacity

Ormoc, though highly urbanized like Tacloban, have more families living below poverty threshold. Therefore, more barangays in Ormoc have high adaptive capacity index. About 13 barangays in Ormoc have high adaptive capacity index (Figure 8). Naungan has the highest adaptive capacity index, perhaps due to the large number of informal settlers in the area. Most of these informal settlers live in stilt houses over the water, while the rest live in houses that are usually submerged during the high tide. The 49 barangays that have moderate adaptive capacities are the rural barangays engaged in fishing and subsistence farming, aside from Barangay 29 which is a poblacion barangay but has residents living under Anilao Bridge. More than half of the remaining 48 barangays that have low adaptive capacity index are located within the poblacion area. These areas are commercialized with only a few residents. Inadequacy in adaptive capacity due to poverty is observed to be higher in Barangay Naungan with index of 0.06437 as compared to the other barangays.

Conclusion and Recommendation

Typhoon Haiyan highlighted that the combination of exposure to climate-related hazards, underlying socioeconomic conditions, and changing demographic characteristics in Tacloban and Ormoc increases the threats of climate-related hazards to communities. Haiyan's impacts would require the examination of the various causes of vulnerability to facilitate measures to reduce these causes or adapt from the combined factors of disasters.

Barangay 88, said to be the hardest hit barangay in Tacloban City by Typhoon Haiyan, is consistently highest in the city in all factors of vulnerability, recording a large differential vulnerability index relative to other barangays. Tacloban has 9 barangays with high vulnerability index. Unfortunately, there is no official data on the number of deaths per barangay due to Typhoon Haiyan in Tacloban City that can be used to validate the computed vulnerability scores.

In Ormoc City, Barangay Naungan, located in the western seaboard of the City, got the highest vulnerability index. Ormoc has 9 barangays with high social vulnerability scores, which are lower than those of Tacloban. The barangays with high overall social vulnerability are also those with high sensitivity indices, with population at risk as the main factor contributing to their vulnerability. However, no association can be established between the vulnerability score and the impact of Typhoon Haiyan as represented by the number of deaths per barangay (see Annex 1). This could be attributed to other factors not considered by the study such as the use of pairwise index in evaluating the weights of the sub-indicators. Furthermore, Ormoc City is located in the southwestern portion of the Leyte Island and only experienced strong winds, which this study was not able to evaluate. Typhoon Haiyan hit the hardest in Eastern Leyte and passed though the province in a northeast direction.

While Tacloban City and Ormoc City are examples of a looming and varying social vulnerability across barangays, it is important not only to consider shortterm structural mitigation measures but also to adopt sustainable and long-term strategies addressing the underlying factors of vulnerability targeted at the community level. This matter will also require basic social services to be more accessible in barangays who score moderate to high vulnerability. Measures to reduce vulnerability should be a local priority and would require political will for community-based climate action, disaster risk reduction and management, and risk-sensitive land use development.

This study provides an approach for assessing social vulnerability using available census and climate-related hazard data to determine areas for intervention targeted at the barangay level. Future related research should consider other key indicators available at the barangay level to capture a more precise vulnerability index.

Annexes

Annex 1: Comparisons of vulnerability level, index, exposure and number of deaths per barangay for Ormoc City.

Barangay	Vulnera- bility Level	Vulnera- bility Index	Highly Exposed to	No. of Deaths due to Hai- yan*
Airport	moderate	0.08785	riverine flooding	2
Alegria	moderate	0.06788	storm surge & riverine flooding	0
Alta Vista	moderate	0.09294	riverine flooding	1
Bagong Buhay	moderate	0.15142	landslide & flash- flood	2
Bagong	moderate	0.07628	landslide & flash- flood	1
Bantigue	moderate	0.15385	storm surge	0
Barangay 1 (Pob.)	low	0.01386	riverine flooding	0
Barangay 10 (Pob.)	low	0.1971	riverine flooding	0
Barangay 11 (Pob.)	moderate	0.07361	riverine flooding	0
Barangay 12 (Pob.)	low	0.02257	riverine flooding	0
Barangay 13 (Pob.)	low	0.04069	riverine flooding	0
Barangay 14 (Pob.)	low	0.02251	riverine flooding	0

Barangay	Vulnera- bility	Vulnera- bility	Highly Exposed to	No. of Deaths due to Hai-
	Level	Index		yan*
Barangay 15 (Pob.)	low	0.05439	flooding	0
Barangay 16 (Pob.)	low	0.03704	riverine flooding	0
Barangay 17 (Pob.)	low	0.02823	riverine flooding	0
Barangay 18 (Pob.)	low	0.01361	riverine flooding	0
Barangay 19 (Pob.)	low	0.01684	riverine flooding	0
Barangay 2 (Pob.)	low	0.02637	riverine flooding	0
Barangay 20 (Pob.)	low	0.03240	riverine flooding	0
Barangay 21 (Pob.)	low	0.04844	riverine flooding	0
Barangay 22 (Pob.)	low	0.05057	riverine flooding	0
Barangay 23 (Pob.)	low	0.05257	riverine flooding	0
Barangay 24 (Pob.)	low	0.04885	riverine flooding	0
Barangay 25 (Pob.)	low	0.05947	riverine flooding	0
Barangay 26 (Pob.)	moderate	0.07102	riverine flooding	1
Barangay 27 (Pob.)	low	0.03519	riverine flooding	0
Barangay 28 (Pob.)	moderate	0.07474	riverine flooding	0
Barangay 29 (Pob.)	moderate	0.13147	riverine flooding	0
Barangay 3 (Pob.)	low	0.00463	riverine flooding	0
Barangay 4 (Pob.)	low	0.02466	riverine flooding	0
Barangay 5 (Pob.)	low	0.00393	riverine flooding	0
Barangay 6 (Pob.)	low	0.00735	riverine flooding	0
Barangay 7 (Pob.)	low	0.00839	riverine flooding	0
Barangay 8 (Pob.)	low	0.00609	riverine flooding	0
Barangay 9 (Pob.)	low	0.00811	riverine flooding	0
Batuan	low	0.02924	riverine flooding	0
Bayog	low	0.05176	riverine flooding	0
Biliboy	low	0.05367	flooding	0

Climate, Disaster and Development Journal Volume 1 Issue 1 January 2016

Barangay	Vulnera- bility Level	Vulnera- bility Index	Highly Exposed to	No. of Deaths due to Hai- yan*
Boroc (Don Carlos Rivilla)	moderate	0.12073		1
Ca- baon-an	low	0.04164	landsline & flash- flood	0
Cabintan	moderate	0.08457	landslide	0
Cabuli- han	moderate	0.08533	landslide & riverine flooding	0
Cagbu- hangin	moderate	0.08473	landslide & riverine flooding	0
Camp Downes	moderate	0.08473	landslide & riverine flooding	0
Can-adi- eng	moderate	0.10348	riverine flooding	0
Catmon	low	0.09086	landslide & riverine flooding	0
Cogon Combado	high	0.03343	riverine flooding	0
Concep- cion	moderate	0.28843	riverine flooding	0
Curva	moderate	0.07210	riverine flooding	10
Danao	low	0.13312	riverine flooding	0
Danhug	moderate	0.08139	storm surge & riverine flooding	0
Dayha- gan	low	0.04754	landslide & riverine flooding	2
Dolores	moderate	0.08383	riverine flooding	1
Domonar	low	0.06482	riverine flooding	0
Don Felipe Larraza- bal	moderate	0.08289	landslide	0
Dn Po- tenciano Larraza- bal	low	003793	landslide & flooding	0
Doña Feliza Z. Meija	moderate	0.11771	riverine flooding	0
Donghol	moderate	0.08141	riverine flooding	0

Barangay	Vulnera- bility	Vulnera- bility	Highly Exposed to	No. of Deaths due to Hai-
Esper-	Level low	0.01924	landslide	yan* 0
anza				
Gaas	low	0.02217	landslide & flash- flood	0
Green Valley	low	0.05977	riverine flooding	1
Guin- tigui-an	moderate	0.09171	riverine flooding	0
Hibun- awon	low	0.04108	landslide & flash- flood	0
Hugpa	low	0.02699	NA	0
Ipil	high	0.24413	storm surge	0
Juaton	moderate	0.07426	riverine flooding	0
Kadao- han	moderate	0.09428	landslide & riverine flooding	0
Labrador (Balion)	moderate	0.08146	riverine flooding	0
Lao	high	0.18155	storm surge	0
Leondoni	low	0.04938	riverine flooding	0
Libertad	high	0.18857	storm surge	1
Liberty	low	0.03215	landslide & flash- flood	0
Licuma	moderate	0.07499	riverine flooding	0
Liloan	high	0.18401	storm surge	2
Linao	high	0.25736	storm surge	1
Luna	low	0.04415	riverine flooding	0
Mabato	moderate	0.1000	riverine flooding	0
Mabini	low	0.05082	landslide & flash- flood	0
Macabug	moderate	0.10435	storm surge	0
Magaswe	low	0.03606	riverine flooding	0
Mahayag	low	0.04022	riverine flooding	0
Mahaya- hay	low	0.03115	landslide & flash- food	0

Barangay	Vulnera- bility Level	Vulnera- bility Index	Highly Exposed to	No. of Deaths due to Hai- yan*
Manlil- inao	moderate	0.07316	landslide	0
Margen	moderate	0.12990	landslide & riverine flooding	1
Mas-in	moderate	0.06948	landslide	0
Matica-a	moderate	0.12063	landslide & riverine flooding	1
Milagro	low	0.06632	landslide & flash- flood	0
Monter- ico	low	0.03772	landslide	0
Nasuno- gan	low	0.05052	riverine flooding	1
Naungan	high	0.32726	strom surge & riverine flooding	1
Nueva Sociedad	low	0.04133	NA	0
Nueva Vista	moderate	0.06979	riverine flooding	2
Patag	moderate	0.10018	NA	1
Punta	high	0.19365	storm surge & riverine flooding	0
Quezon, Jr.	moderate	0.08708	riverine flooding	0
Rufina M. Tan	moderate	0.08743	landslide & riverine flooding	0
Sabang Bao	moderate	0.07681	riverine flooding	0
Salva- cion	moderate	0.09689	riverine flooding	0
San Antonio	low	0.05364	storm surge & riverine flooding	0
San Isidro	moderate	0.13146	riverine flooding	0
San Jose	moderate	0.15853	landslide & riverine flooding	0
San Juan	moderate	0.07650	storm surge & riverine flooding	0
San Pablo (Siman- gan)	moderate	0.13378	riverine flooding	0

Barangay	Vulnera- bility Level	Vulnera- bility Index	Highly Exposdd to	No. of Deaths due to Hai- yan*
San Vicenter	low	0.04400	landslide	0
Santo Niño	moderate	0.09484	riverine flooding	0
Su- mangga	moderate	0.08423	riverine flooding	0
Tambul- ilid	low	0.28127	storm surge & riverine flooding	2
Tongo- nan	moderate	0.07163	landslide	0
Valencia	moderate	0.16252	riverine flooding	0

^aCity Health Office-Health Emergency Management Staff (CHO-HEMS), Ormoc City

Annex 2: Vulnerability level, vulnerability index, and exposure level per barangay for Tacloban City

Barangay	Vulnerability Level	Vulnerability Index	Exposure Level
Barangay 2	low	0.03711	moderate
Barangay 5	low	0.02299	low
Barangay 5-A	low	0.01646	low
Barangay 6	low	0.06986	low
Barangay 6-A	low	0.08478	low
Barangay 7	low	0.01922	low
Barangay 8	low	0.01827	low
Barangay 8-A	low	0.01549	low
Barangay 100	moderate	0.21673	moderate
Barangay 101	moderate	0.10727	high
Barangay 102	low	0.06355	low
Barangay 103	high	0.26579	moderate
Barangay 103-A	low	0.09772	moderate
Barangay 104	moderate	0.18604	moderate
Barangay 105	moderate	0.14059	moderate
Barangay 106	moderate	0.12677	high
Barangay 107	moderate	0.11479	moderate
Barangay 108	moderate	0.1134	moderate
Barangay 109	moderate	0.11885	low
Barangay 109-A	moderate	0.19379	moderate
Barangay 110	high	0.29659	moderate
Barangay 12	moderate	0.14724	moderate
Barangay 13	low	0.04870	moderate
Barangay 14	low	0.02080	low
Barangay 15	low	0.01010	low
Barangay 16	low	0.00749	low

Climate, Disaster and Development Journal Volume 1 Issue 1 January 2016

Barangay	Vulnerability Level	Vulnerability Index	Exposure Level
Barangay 17	low	0.01211	low
Barangay 18	low	0.01391	low
Barangay 19	low	0.01750	low
Barangay 20	low	0.02621	low
Barangay 21	low	0.01259	low
Barangay 21- A	low	0.01260	low
Barangay 22	low	0.01500	low
Barangay 23	low	0.02670	low
Barangay 23-A	low	0.03406	low
Barangay 24	low	0.03739	low
Barangay 25	low	0.09707	moderate
Barangay 26	low	0.02575	low
Barangay 27	low	0.01580	low
Barangay 28	low	0.02083	low
Barangay 29	low	0.01325	low
Barangay 30	low	0.00903	low
Barangay 31	low	0.05402	low
Barangay 32	low	0.01648	low
Barangay 33	low	0.01327	low
Barangay 34	low	0.02129	low
Barangay 35	low	0.01706	low
Barangay 35-A	low	0.07173	low
Barangay 36	low	0.06522	moderate
Barangay 36-A	low	0.03831	low
Barangay 37	low	0.28076	moderate
Barangay 37-A	moderate	0.11399	moderate
Barangay 38	low	0.02877	low
Barangay 39	moderate	0.18749	moderate
Baragay 40	low	0.01479	low
Barangay 41	low	0.01716	low
Barangay 42	low	0.06566	low
Barangay 42-A	moderate	0.11472	low
Barangay 43	low	0.03159	low
Barangay 43-A	low	0.06915	low
Barangay 43-B	moderate	0.13364	moderate
Barangay 44	low	0.02740	low
Barangay 44-A	low	0.01278	low
Barangay 45	low	0.04316	moderate
Barangay 46	low	0.03581	low
Barangay 47	low	0.03517	low
Barangay 48	low	0.02361	low

Barangay	Vulnerability Level	Vulnerability Index	Exposure Level
Barangay 48-A	low	0.05200	low
Barangay 48-B	low	0.04867	low
Barangay 49	moderate	0.10501	moderate
Barangay 50	low	0.04541	moderate
Barangay 50-A	low	0.06230	moderate
Barangay 50-B	low	0.06625	moderate
Barangay 51	low	0.03752	low
Barangay 51-A	low	0.03478	low
Barangay 52	moderate	0.13886	high
Barangay 53	low	0.04306	low
Barangay 54	low	0.08507	moderate
Barangay 54-A	low	0.09310	moderate
Barangay 56	low	0.08555	moderate
Barangay 56-A	low	0.06237	moderate
Barangay 57	low	0.7275	low
Barangay 58	low	0.06525	low
Barangay 59	moderate	0.13905	low
Barangay 59-A	moderate	0.17042	low
Barangay 59-B	low	0.04785	low
Barangay 60	low	0.04741	low
Barangay 60-A	moderate	0.11937	low
Barangay 61	low	0.07855	low
Barangay 62	moderate	0.11849	low
Barangay 62-A	moderate	0.21872	low
Barangay 62-B	low	0.06849	low
Barangay 63	moderate	0.16040	moderate
Barangay 64	moderate	0.11326	moderate
Barangay 65	low	0.08539	low
Barangay 66	moderate	0.11216	moderate
Barangay 66	moderate	0.11216	moderate
Barangay 66-A	moderate	0.11326	moderate
Barangay 67	moderate	0.15057	high
Barangay 68	moderate	0.20725	high
Barangay 69	moderate	0.20741	high
Barangay 70	moderate	0.13941	high
Barangay 71	moderate	0.23353	high
Barangay 72	low	0.08595	high
Barangay 73	low	0.08052	high

Barangay	Vulnerability Level	Vulnerability Index	Exposure Level
Barangay 74	high	0.36425	high
Barangay 75	low	0.09240	high
Barangay 76	low	0.05999	moderate
Barangay 77	moderate	0.10745	moderate
Barangay 78	moderate	0.10824	moderate
Barangay 79	moderate	0.16567	high
Barangay 80	low	0.05063	moderate
Barangay 81	low	0.07812	moderate
Barangay 82	low	0.06379	low
Barangay 83	moderate	0.12186	moderate
Barangay 83-A	moderate	0.10225	moderate
Barangay 83-B	moderate	0.18425	moderate
Barangay 83-C	moderate	0.18361	moderate
Barangay 84	high	0.27474	high
Barangay 85	moderate	0.11136	moderate
Barangay 86	moderate	0.10646	moderate
Barangay 87	moderate	0.13132	moderate
Barangay 88	high	0.66792	high
Barangay 89	high	0.34450	high
Barangay 90	moderate	0.13461	high
Barangay 91	moderate	0.18401	moderate
Barangay 92	moderate	0.22149	high
Barangay 93	high	0.26810	moderate
Barangay 94	moderate	0.17355	moderate
Barangay 94-A	moderate	0.16367	high
Barangay 95	moderate	0.18215	moderate
Barangay 95-A	moderate	0.24304	high
Barangay 96	moderate	0.22288	moderate
Barangay 97	moderate	0.19934	moderate
Barangay 98	moderate	0.13117	low
Barangay 99	high	0.39874	high
El Reposo	low	0.03813	low
Barangay	Vulnerability Level	Vulnerability Index	Exposure Level
Libertad	low	0.09325	moderate
Nula-tula	moderate	0.00000	moderate

References

- Asuero, M. P., Nelson, G. L. M., Espaldon, M. V. O., Acosta, L. A., Macandog, D. M., Lalican, N. M., Talubo, J. P. P. (2012). Social characteristics and vulnerabilities of disaster-prone communities in Infanta, Quezon, Philippines. *Journal of Environmental Science and Management*, 15(2), 19-34.
- Balica, S. F., Wright, N. G., & Meulen, F. van der. (2012). A flood vulnerability index for coastal cities and its use in assessing climate change impacts. *Natural Hazards*, 64(1), 73–105. http://doi.org/10.1007/s11069-012-0234-1
- Bolin, R., & Bolton, P. (1986). Race, religion, and ethnicity in disaster recovery (Disaster Recovery, Program on Environment and Behavior Monograph No. 42). Boulder, CO: Institute of Behavioral Science, University of Colorado.
- Bolin, R., & Stanford, L. (1991). Shelter, Housing and Recovery: A Comparison of U.S. *Disasters*. *Disasters*, 15(1), 24–34. http://doi.org/10.1111/j.1467-7717 .1991.tb00424.x
- Burton, I., Kates, R. W., & White, G. F. (1993). *The Environment As Hazard* (Second Edition). New York: The Guilford Press.
- Cannon, T. (1994). Vulnerability analysis and the explanation of "natural" disasters. In *A. Varley (Ed.), Disasters, Development and Environment* (pp. 13–30). Chichester: Wiley.
- Community-Based Monitoring System Network. (2011a). Ormoc City CBMS. Manila, Philippines: De La Salle University - Angelo King Institute for Economic and Business Studies.
- Community-Based Monitoring System Network. (2011b). Tacloban City CBMS: The Many Faces of Tacloban. Manila, Philippines: De La Salle University -Angelo King Institute for Economic and Business Studies.
- Cutter, S. L., Boruff, B. J., & Shirley, W. L. (2003). Social vulnerability to environmental hazards. *Social Science Quarterly*, 84(2), 242–261. http://doi.org/10.1111/1540-6237.8402002
- Cutter, S. L., & Corendea, C. (2013). From social vulnerability to resilience: measuring progress toward disaster risk reduction. UNU- EHS. Retrieved from http:// collections.unu.edu/view/UNU:1885

- Cutter, S. L., Emrich, C. T., Webb, J. J., & Morath, D. (2009). Social vulnerability to climate variability hazards: A review of the literature. *Final Report to Oxfam America*, 5. Retrieved from http://www.mfpp.org/Climate_Solutions_ University/pluginfile.php/171/mod_resource/content/0/ Literature_Review.pdf
- Cutter, S. L., & Finch, C. (2008). Temporal and spatial changes in social vulnerability to natural hazards. *Proceedings of the National Academy of Sciences*, 105(7), 2301–2306. http://doi.org/10.1073/pnas.0710375105
- Cutter, S. L., Johnson, L. A., Finch, C., & Berry, M. (2007). The U.S. hurricane coasts: Increasingly vulnerable? *Environment: Science and Policy for* Sustainable Development, 49(7), 8-21. http://doi. org/10.3200/ENVT.49.7.8-21
- Cutter, S. L., Mitchell, J. T., & Scott, M. S. (2000). Revealing the Vulnerability of People and Places: A Case Study of Georgetown County, South Carolina. Annals of the Association of American Geographers, 90(4), 713– 737. http://doi.org/10.1111/0004-5608.00219
- Godschalk, D. R., Brower, D. J., & Beatley, T. (1989). Catastrophic Coastal Storms: Hazard Mitigation and Development Management. Duke University Press.
- H. John Heinz III Center for Science, Economics, and the Environment. (2000). The Hidden Costs of Coastal Hazards: Implications For Risk Assessment And Mitigation. Washington, D.C.: Island Press.
- Hahn, M. B., Riederer, A. M., & Foster, S. O. (2009). The Livelihood Vulnerability Index: A pragmatic approach to assessing risks from climate variability and change—A case study in Mozambique. *Global Environmental Change*, 19(1), 74–88. http://doi.org/10.1016/j. gloenvcha.2008.11.002
- Hammill, A., Bizikova, L., Dekens, J., & McCandless, M. (2013). Comparative analysis of climate change vulnerability assessments: Lessons from Tunisia and Indonesia. Eschborn, Germany: Deutsche Gesellschaft für Internationale Zusammenarbeit (GIZ) GmbH. Retrieved from https://gc21.giz.de/ibt/var/app/wp342deP/1443/ wp-content/uploads/filebase/va/vulnerability-guidesmanuals-reports/Comperative-analysis-of-climatechange-vulnerability-assessments.pdf
- Hewitt, K. (1997). Regions of Risk: A Geographical Introduction to Disasters. Routledge

- IPCC. (2007). Climate Change 2007: Synthesis Report. Contribution of Working Groups I, II and III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. (Core Writing Team, R. K. Pachauri, & A. Reisinger, Eds.). IPCC, Geneva, Switzerland: Intergovernmental Panel on Climate Change.
- Mileti, D. (1999). Disasters by Design: A Reassessment of Natural Hazards in the United States. Joseph Henry Press.
- Mitchell, J. K., Abdel-Ghaffar, A. M., Gentry, R. C., Leatherman, S. P., & Sparks, P. (1986). *Hurricane Diana*, *North Carolina*: September 10-14, 1984. National Research Council. Retrieved from http://hdl.handle.net/2027/ uiug.30112104066565
- Morrow, B. H. (1999). Identifying and mapping community vulnerability. *Disasters*, 23(1), 1–18. http://doi. org/10.1111/1467-7717.00102
- National Disaster Risk Reduction and Management Council. (2014). NDRRMC Update, SitRep No. 108, Effect of Typhoon "Yolanda" (Haiyan). Quezon City, Philippines. Retrieved from http://www.ndrrmc.gov.ph/attachments/ article/1329/Effects_of_Typhoon_YOLANDA_ (HAIYAN)_SitRep_No_108_03APR2014.pdf
- National Statistical Coordination Board. (2010). Poverty Statistics. Makati City, Philippines.
- National Statistical Coordination Board. (2012). Poverty Statistics. Makati City, Philippines.
- National Statistics Office. (2007). Population Data. Quezon City, Philippines.
- National Statistics Office. (2010). Population Data. Quezon City, Philippines.
- Ngo, E. B. (2001). When disasters and age collide: reviewing vulnerability of the elderly. *Natural Hazards Review*, 2(2), 80–89. http://doi.org/10.1061/(ASCE)1527-6988(2001)2:2(80)
- O'Brien, P., & Mileti, D. (1992). Citizen participation in emergency response following the Loma Prieta earthquake. *International Journal of Mass Emergencies and Disasters*, 10(1), 71–89.
- Peacock, W. G., Gladwin, H., & Morrow, B. H. (1997). Hurricane Andrew: Ethnicity, Gender and the Sociology of Disasters. Routledge.

- Platt, R. H. (1991). Lifelines: An emergency management priority for the United States in the 1990s. *Disasters*, 15(2), 172–176. http://doi. org/10.1111/j.1467-7717.1991.tb00446.x
- Puente, S. (1999). Social vulnerability to disasters in Mexico City: An assessment method. In J. K. Mitchell (Ed.), *Crucibles of hazard: Mega-cities and disasters in transition* (p. 535). Tokyo: UNU Press. Retrieved from http:// collections.unu.edu/eserv/UNU:2385/nLib9280809873.pdf
- Sullivan, C. A., Meigh, J. R., & Fediw, T. S. (2002). Derivation and Testing of the Water Poverty Index Phase 1. Final Report May 2002 (Report to Department for International Development, Centre for Ecology and Hydrology, Wallingford, UK.).
- Thomas, D. S. K., Philipps, B. D., Lovekamp, W. E., & Fothergill, A. (Eds.). (2013). Social Vulnerability to Disasters, Second Edition (Second Edition). Boca Raton: CRC Press.
- Tobin, G., & Ollenburger, J. (1992). *Natural hazards* and the elderly. Natural Hazards Research and Applications Information Center, University of Colorado. Retrieved from http://scholarcommons.usf.edu/fmhi_pub/16
- Uitto, J. I. (1998). The geography of disaster vulnerability in megacities: A theoretical framework. *Applied Geography*, (1), 7–16. http://doi.org/10.1016/ S0143-6228(97)00041-6
- United Nations Development Programme. (2014). Sustaining Human Progress: Reducing Vulnerabilities and Building Resilience (Human Development Report 2014.).
- United Nations International Strategy for Disaster Reduction. (2009). 2009 UNISDR terminology on disaster risk reduction.
- White, G., & Haas, J. E. (1975). Assessment of Research on Natural Hazards. Cambridge, Mass: The MIT Press.
- Wisner, B., Blaikie, P., Cannon, T., & Davis, I. (2003). At Risk: Natural Hazards, People's Vulnerability, and Disaster (Second Edition). London: Routledge.
- WWF & BPI. (2013). Business Risk Assessment and the Management of Climate Change Impacts. Retrieved from http://wwf.org.ph/wwf3/downloads/publications/ Business%20Risk%20Assessment%20and%20the%20 Management%20of%20Climate%20Change%20 Impacts%20-%2012%20Cities.pdf

- Yusuf, A. A., & Francisco, H. (2009). Climate Change Vulnerability Mapping for Southeast Asia (EEPSEA Special and Technical Paper No. tp200901s1). Economy and Environment Program for Southeast Asia (EEPSEA). Retrieved from https://ideas.repec.org/p/eep/tpaper/ tp200901s1.html
- Zahran, S., Brody, S. D., Peacock, W. G., Vedlitz, A., & Grover, H. (2008). Social vulnerability and the natural and built environment: a model of flood casualties in Texas. *Disasters*, 32(4), 537–560. http://doi.org/10.1111/j.1467-7717.2008.01054.x