

UNIVERSITÄT HOHENHEIM

Institute for Plant Poduction and Agroecology in the Tropics and Subtropics (380)

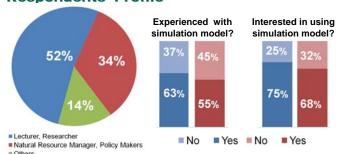
Negotiation support tools: linking science and policy

Betha Lusiana^{1,2}, Meine van Noordwijk² and Georg Cadisch¹

¹ Institute for Plant Production and Agroecology in the Tropics and Subtropics (380), Hohenheim University. Garbenstr. 13, Stuttgart, Germany; ² The World Agroforestry Centre - Southeast Asian Programme, Jl. CIFOR, Situ Gede, Bogor, Indonesia

Challenges

Agro-ecosystems involve tradeoffs between multiple functions related to food security, climate change, policy interventions and technological innovations. Integrated Natural Resource Management requires a dynamic and efficient approach to assess the various plausible options in managing the landscape.


- Can envisioning tools such as simulation models and scenario analysis help decision makers and natural resource managers to explore plausible options effectively and efficiently?
- What are the essential factors for a simulation model or model results to be valuable for natural resource management and decision making?

Approach

A study addressing users perceptions of simulation models was conducted with 115 respondents of potential model users in SE Asia and Africa questioned:

quodionou.		
Salience	relevance of simulation model results to model users	
Credibility	the ability of simulation model to meet the technical and	
Credibility	scientific standard	
Legitimacy	model scenarios are perceived by users as unbiased	
Legitimacy	and developed transparently	

Respondents' Profile

Desirable simulation model: users' perspectives

Rank	Criteria	
1	Clear and understandable theory and processes underlying the model	
	Model output is useful and applicable for managing natural resources	Salience and
2	Model output has similar patterns to what is observed in the field	Credibility
	Model is easy to use and parameterize	
3	Model output is attractive and easy to understand	
4	Model was developed by well known scientist	Legitimacy
5	Model has previously been used by policy makers	Legitillacy

Findings confirmed

- Model validity does not just depend on statistical test of observed vs predicted.
- Expectations of models to assist in decisions in complex systems is unrealistically high.

TUL-SEA

"Trees in multi-Use Landscapes in Southeast Asia (TUL-SEA):
A negotiation support toolbox for Integrated Natural Resource
Management' is a project that aims to promote and equip local resource
managers with cost-effective, replicable tools and approaches to appraise the
likely impacts of new technologies and changes in market access on multiuse landscape. The project, funded by BMZ/GTZ, runs in Southeast Asia
countries: China, Indonesia, Philippines and Vietnam. The project strives for:

• bridging perception gaps between stakeholders (local, public/policy and
scientific knowledge paradigms,

- providing quantification of tradeoffs between economic and environmental impacts at landscape level, and
- •facilitating joint analysis of plausible scenarios based on available data and information as a basis for negotiation on contentious issues.

Example of appraisal and scenario tools

Agroforestry ~ Watershed Management Toolbox options

Initial appraisal of context	Watershed appraisal	Supportive Tools/ Simulation Models			
Landscape issues Drivers of land use change Rural poverty Agroforestry systems & RAFT technology Market access Tenure Claim RATA	Watershed functions Landslide risks Spatial analysis of patterns and LUC Landscape scenario baselines Constraint analysis	*GenRiver & SpatRain: Hydrology • WaNuLCAS: Tree-soil-crop interactions • Tree*Site matching			
NSS: Negotiation support process					

Note: Words in Capital letters refer to abbreviation of respective tools

Users' expectation from a model

A model can

- ... help prospect the future
- \ldots efficiently and effectively support project/research work
- ... produce outputs that helps manage natural resources
- ... ease communication to stakeholders

What's next?

Evaluation on stakeholders' perceptions on modelling process including scenarios applied and results derived

gtz