

Ikalahan Ancestral

Domain

Mean annual rainfall: 4,000 mm

Tree cover transitions in space and time

The high pressure on the Kalahan Forest Reserve (KFR) contributes to the forest cover change within the ancestral domain. The conversion of forest to cash crop plantations, such as vegetable, is ranked as the dominant driver of tree change. Fortunately, the rate of deforestation is decreasing due to various tree growing activities implemented in the last decade.

Table 1. Five major land cover types within the KFR

Land use	Physical features	Dominant species	Land use practices
Agriculture	Generally in an open condition	Mix agricultural crops	Agricultural farming
	located on relatively flat to slope	(camote, cassava,	using combined
	terrain structurally showing	beans, rice, corn, taro,	traditional swidden
	more undergrowth and few	okra, ginger) planted in	farming and non-
	trees and intermediate layer on	patches.	traditional system.
	farm perimeter.		
Agroforestry	Basically situated on moderate	Fruit bearing (avocado,	Intercropping with
	slope depicting a semi-open	mango, guava, citrus,	mostly fruit bearing
	canopy with few intermediate	papaya) and trees	and tree crops.
	and abundant undergrowth	(mahogany, Gmelina,	
	layer of condition.	Narra).	
Grassland	Usually abundant in open areas	Mostly Imperata	Commonly used as
	along moderate to steep terrain.	cylindrica and Themed	pasture land though
	Structurally, undergrowth layer	triandra but with some	some areas were left
	dominated with abundance of	species of ferns, shrubs,	abandoned making it
	grasses with very few spots of	and other grasses	prone to grassfire
	small trees.		
Reforestation	On steep to very steep slope	Dominance of 10-15	Intercropping of coffee
	areas that showed slightly open	year old plantation of	in reforested areas
	canopy with dominant trees,	either Alnus Benguet	planted with Alnus and
	followed by intermediate and	Pine or Gmelina.	agricultural farming
	undergrowth layers		adjacent to Gmelina
			but pure planting of
			mix trees in other
			areas.
Secondary	Located on middle to higher	Dominance of	Absence of any land
forest	elevated areas showing semi-	dipterocarps (Palosapis,	use practices within,
	closed canopy and fewer	White Lauan, Guijo) and	except for tree planting
	understory layers.	non dipterocarp (Pine,	in pine forest.
		Philippine oaks, legume,	
		Syzygium), trees.	

conversion of forest to brush lands and cultivated lands. An image analysis of the forest reserve between the two periods showed an on-going deforestation rate of 0.03% in the area.

Kalahan Forest Reserve Vegetation Map, 1989

Kalahan Forest Reserve Vegetation Map, 2010

Source: FAO. 2012. Linking Communities to Voluntary Forest Carbon Market: The Case of Kala-

Source: Villamor, G.B., Pampolina N, Forcadilla R, Bugtong N, Alano J, Rice D, Omas T, Castillo R, Pulan D.2010. Rapid Carbon Stock Assessment (RaCSA), Kalahan, Nueva Viscaya Philippines. Working Paper 106. Bogor, Indonesia: World Agroforestry Centre (ICRAF) Southeast Asia Program. 87 p

 Land cover change assessment within KFR showed a 0.10% decrease in vegetation from 1989 to 2010. The decrease in forest cover is attributed largely to han, Nueva Vizcaya, Philippines (Final Report).

Using the Forest, Agroforest, Low-Value Landscape or Wetland (FALLOW) model, it was predicted that the entire landscape would experience a decrease in forest area of about 85 ha/yr and increase of agricultural/grassland area of about 85 ha/yr from 2001-2030 given a population growth rate of 1.78/yr as the driver. FALLOW model simulates landscape dynamics and the consequences of the application of different drivers in various scenarios.

Source: Suyanto et al (2008) cited in Villamor, G.B. and M. Pindog. 2008. Participatory poverty and livelihood assessment report, Kalahan, Nueva Vizcaya, the Philippines. WP number 67. Bogor, Indonesia, World Agroforestry Centre -ICRAF, SEA Regional Office. 37p.

• Tree cover in KFR is expected to improve with various

tree growing activities currently implemented by various stakeholders, such as the government's National Greening Program and the recently completed USAID project that restored 260 ha of forests, among many others.

For more information, please contact Dr. Rodel D. Lasco | r.lasco@cgiar.org