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Table 4.3. Summary of evidence regarding the ‘scale effects’ of land use change impacts on
watershed functions (compare Table 1.2)

Aspect Intrinsic scaling
relationship

Is the restriction of LU impacts to
100 km2 real?

Total water
yield

Proportional to relative
discharge efficiency of all
land uses upstream,
weighted by rainfall

1) Lack of evidence for areas > 100
km2 is probably based on difficulties
of inference for the slower process of
land use change when larger areas are
considered.
2) A major hypothesis that emerges is
that additional water after forest
conversion creates opportunities for
irrigation that tend to be used on a
decadal time scale, leading to neutral
effects on overall flow

Peak flows Intrinsic scaling rule for
maximum daily flow rate of
area0.75; our analysis sug-
gests that the power of the
scaling rules does depend on
land use

Lack of evidence of noticeable
impacts on peak flows may well
reflect a real ‘lack of impact’ rather
than ‘lack of evidence’; within the
reduced uncertainty world of models
impacts can be traced further
downstream, but uncertainty about the
areal extent of peak rainfall events that
are the driver for peak flows limits
empirical inference

Dry season
flows

Where the flow pathways for
slow flows are not beyond
the root zone of (deep-
rooted) trees, substantial
effects of spatial pattern can
complicate the intrinsic area-
based scaling rule

Impacts in areas larger than 100 km2

can be real, but the multitude of flow
pathways when larger areas are
considered makes inference more
complex. In dry areas the impacts of
land cover change through changes in
groundwater flow and its salt load can
extend to 10,000 km2 areas or more as
in the Australian case

Sediment load Larger areas tend to include
areas where sedimentation
can occur, as well as involve
a change from ‘substrate
limited’ to ‘energy limited’
dynamics of the sediment
load of streams by passage
through ‘sedimentation fans’
or ‘alluvial deposits’

The change from direct land use
related drivers to conditions in the
river bed as main explanation of
sediment loads makes impacts of land
use change less important when larger
areas are considered
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4.6 Reflection on the hypotheses

Hypothesis Evidence Adequate model represen-
tation that allows testing

0. Differences in the
thresholds involved in
the relations between
land use intensity,
biodiversity conser-
vation and the various
watershed functions
make it unlikely that
local interests in wa-
tershed functions (W)
will be sufficient to
achieve biodiversity
conservation (B)

Conversion to coffee-based
agroforestry mosaic in
Sumberjaya ASB benchmark is
OK for W, but involves large B
loss. W thresholds relate to soil
(and thus to belowground
biodiversity?), riparian zone filter
and wetland buffer areas (a
subset of B), rather than on B as a
whole

Scaling relationship of
biodiversity value from
patch to landscape mosaic
remains major challenge;
biophysical side of W and
its scale relationship and
pattern dependency is
sufficiently understood;
translation to ‘stakeholder
value’ is still a challenge

1. Initial stages of land
use intensification al-
low both watershed
protection and biodi-
versity conservation
functions to be main-
tained at levels close to
that of natural forest

Logging operations tend to dama-
ge W rather than B depending on
log transport through streams;
‘reduced impact logging’ has less
negative W impacts; selective
NTFP extraction is a risk for B
rather than W, at population
densities < 5 km-2; open field
agriculture with fallow rotations
can maintain most of B and W
values till 10- 15 persons km-2;
forms of modified forest with
‘domesticated’ NTFP’s can allow
for 30 persons km-2 in high B and
high W landscapes

The initial stages of land use
intensification as such are
poorly represented in
models, as they tend to lead
to gradual changes that are
not easily recognizable by
remote sensing. The
FALLOW model is
available as vehicle for
translating effects on B and
W known at the activity
level to their consequences
in a land use mosaic

2. Substantial further
intensification is
feasible without major
negative impacts on
any of the watershed
protection functions
through forms of
agroforestry, but with
major losses to
biodiversity value

Conversion to rubber agrofores-
try mosaic as in Jambi ASB
benchmark is OK for W and
maintains B, but close to its
threshold at 50 persons km-2;
further intensification in tree
crops affects B rather than W; for
‘open field agriculture’ the B loss
in reducing fallow periods clearly
proceeds loss in W

Most existing models can
translate changes in
aboveground vegetation to
changes in interception and
seasonal patterns of
evapotranspiration. Impacts
on the ‘slow variables’ via
changes in soil structure are
modeled only in some of the
more recent models – and
need further parametrization
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3. Further (attempts at)
land use intensification
will negatively affect
most watershed
functions, leading to
land covers that
represent low values
for both functions

Intensification in tree crops such
as coffee to ‘sun coffee’ can
affect W in Sumbarjaya ASB
benchmark. Intensification in
open-field agriculture has a
challenge in maintaining soil
structure and thus W; Mae
Chaem benchmark data on soil
bulk density support this
conclusion

Where soil compaction leads
to measurable changes in
bulk density, relative to its
texture-based reference
value, translation to
infiltration in process-based
models is feasible. Adequate
process description for
surface runoff exists, but the
entrainment of soil particles
into this flow and the way
this depends on surface soil
structure is still largely
empirical

4. Starting from
landscapes in which
both watershed
functions and
biodiversity values are
highly degraded,
opportunities for
rehabilitation of most
watershed functions
exceed those for
recovery of
biodiversity values

The time frame required for
rehabilitation of biodiversity
depends on the type of habitat
and the effective removal of the
land-use related threats to
biodiversity. Rehabilitation of
watershed functions is likely to
be more compatible with
intensive land use. Restoration of
filter and buffer functions and
properties at the soil surface can
be rapid, but the time frame for
effective restoration of soil
structure for deeper infiltration is
uncertain (and may be similar to
that required for aspects of
biodiversity

Biodiversity restoration and
its dependence on biological
reservoirs in the broader
landscape is not adequately
represented in current
models. The process-level
description of regeneration
of soil structure in
WaNuLCAS remains to be
tested with field data

5. Total water yield
from catchments
primarily depends on a)
rainfall, b) the fraction
of rainfall used in
evaporation of canopy-
intercepted water, c)
the amounts transpired
by ‘evergreen’ and
‘deciduous’ natural or
managed vegetation
and d) the extractions
for water use elsewhere

For sufficiently longtime periods
this may be a ‘truism’, but inter-
annual variability in rainfall (incl.
El Nino years) and inter-seasonal
transfers via changes in the soil
and river storage terms can be
substantial. Model tests for larger
areas generally have the ‘excuse’
of uncertainty in the actual
rainfall amounts, as the density of
rainfall stations is insufficient for
direct extrapolation to the
catchment areas as a whole

Models can deal with this
issue with different degrees
of temporal and spatial
resolution, but the
underlying processes are
well represented
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6. The ratio of peak
and base flows
primarily depend on a)
properties of terrain
and soil profile and b)
land-use related
changes in plot-level
soil (surface) structure
and c) landscape-level
drainage structure, and
can thus operate
independent of changes
in total water yield

The Way Besai (Sumber Jaya)
data summarized in Fig. 4.3
indicate independence of peak
flows as well as low flows where
total water yield increased after
forest conversion; this data may
be the first of its kind in the way
of data analysis, but the
underlying process is probably
not unique for the location…

Controls on soil structure
and infiltration operate at a
different time scale form the
controls on aboveground
water use; some of the
recent models include
dynamic changes in soil
properties and can thus
explore the time-lags
involved

7. Temporal dynamics
of high and low flows
of rivers are influenced
by spatial scale through
a) the space-time
characteristics of
rainfall, b) the land-use
related speed of
delivery to streams and
c) the (riparian-zone
related) transport
properties of the river
system; the direct
influence of land use
change on stream flow
strongly decreases with
distance along the
stream

For the Way Besai series we
found that models with spatially
heterogeneous rainfall can give a
more satisfactory account of the
frequency distribution of flow
regimes than any method that
assumes station-level rainfall to
apply across the catchment.
Impacts of river beds on stream
flow are likely to be noticeable
only in large areas

Engineering models of river
flow can include impacts of
the river bed on flow
conditions, but tend to
exclude effects of land use
on process of water delivery
to the streams. Models that
started from the analysis of
land cover change tend to be
lacking in detail on the
conditions of the river bed.

8. Spatial organization
of a landscape, at given
fractions of land cover
types, has a strong
influence on net
sediment loads of
streams and rivers but
less so on total water
yield or peak flows

Data on erosion and net sediment
loss after slash-and-burn land
clearing in Jambi (Roodenburg et
al., 2003) show the importance of
land form. The FALLOW model
application to Sumber Jaya
makes plausible that there are
impacts of location of tree cover

Models need to explicitly
account for ‘lateral flows’ to
allow exploration of
locational effects. Ranieri et
al., 2004 give examples.
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9. Local hazard to
people living in a
(sub)catchment due to
changes in watershed
functions in response to
land use changes are
primarily linked to a)
peak flow after peak
rainfall events, b) low
dry season flows, c)
landslides and d)
changes in water
quality (sediment load,
pollutants, nutrients)

Where drinking water and water
for other domestic use is directly
derived from the landscape, local
concerns over water quality may
dominate over concerns over
water quantity. Protection the
flow lines that generate
groundwater streams, through
protection of forests on fill tops
and upper slopes may derive
from such ‘quality’ concerns

The location in the
landscape where slow flows
appear (in springs or
otherwise) can only
predicted from a detailed
geomorphological study;
changes in the amount of
water that enters such
pathways can be simulated
by most of current water
balance models.
Landslide risk models tend
to focus on ‘permanent’
features such as slope, soil
type and climate, rather than
on properties that can
change through land use,
such as root strength (but
see Sidle and Dhakal, 2003)

10. Far field effects on
people living
downstream are
primarily linked to
changes in a) total and
seasonal water yield in
relation to the transport
capacity of the river
network and the
probability of bank
overflow at critical
locations, and b) the
storage capacity (in
lakes, reservoirs,
floodplains) of the river
network.

The management rules of
reservoirs and dams tend to
dominate flooding risk in rivers
that are heavily regulated; the
public perception tends to
overrate the importance of forests
in upper catchments for such
circumstances

Extractions from the river
for irrigation can, especially
in dry areas, be a significant
factor that tends to be
underrated
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4.7 Priority issues for follow up research
This study has brought to light a number of weakness in existing models and the
underlying process knowledge, and opportunities to make significant progress. Important
challenges are:

Ø Better quantification of water use by different forest types, especially for
subhumid zone as in Mae Chaem

Ø Better representation of long term changes in soil physical properties and
opportunities for rehabilitation under local farm management (dynamics of soil
properties in models such as GenRiver)

Ø Representation of filter effects on overland flows into models based on generation
and infiltration of overland flow, entrainment of soil particles in overland flows
and conditions that allow sedimentation

Ø Dynamic representation of landslide risks linked to dynamics (growth and decay)
of deep root system for different forest types and trees in sparse vegetation

Ø Role of bank erosion and changes in storage capacity of the river bed in net
sediment flows

Ø Conditions under which flooding risk will increase more than proportionally to
the average buffering indicator

Ø Role of bank overflow and temporary water storage in wetlands on flooding risks
downstream (‘landscape level buffering’)

Ø Rainfall patterns with complex orographic effects such as in Mae Chaem and their
impact on error margins in models based on input-output comparisons
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5.  Conclus ions  for  natural  resource  management5 .  Conclus ions  for  natural  resource  management

5.1 From a natural resource management perspective ‘watershed functions’ and
‘biodiversity conservation’ are clearly separate issues, as the thresholds for change
during land use intensification differ substantially; indicators at plot, landscape,
subcatchment and catchment scale of the historical land use change between ‘natural
vegetation’ and ‘current land use pattern’ suggest that watershed functions involved
in the transfer, buffering and gradual release of water are maintained (or even
improved as far as total water yield is concerned), despite considerable loss in
biodiversity value. Only upon further intensification of land use with a dominance of
open –field agriculture (or built-up urban areas) will these watershed functions be
affected negatively. The separation of ‘watershed functions’ and ‘biodiversity
conservation’ agendas at a policy level has important consequences for the overlap in
stakeholders. Only in very specific circumstances can we expect local interests in
maintenance of watershed functions to lead to the type of land cover that is optimal
for biodiversity conservation.

5.2 The empirical scaling rule that relates maximum daily flows (and thus flooding
risks) to area to the power 0.75 and mean annual flows to area as such, suggests that
flooding risk is a ‘local hazard’ and total water yield a ‘positive far field effect’ of
forest conversion. The scaling rule can be understood from the spatial pattern in
rainfall, only in combination with a (land cover dependent) intercept in the rainfall-
runoff relationship. It is thus likely that land cover change cannot only affect the
maximum flows at plot level, but also the inherent scaling rule. The scaling rule for
species richness (roughly proportional to area to the power 0.25) differs essentially
from that for watershed functions, and we can thus expect the trade-off between
biodiversity and watershed functions to differ with the area under consideration. For
biodiversity values a ‘segregate’ scenario with areas of high biodiversity value
effectively protected in a landscape otherwise optimized for productive functions may
be optimal. For watershed functions a more ‘integrated’ land use mosaic that prevents
any area from degradation beyond critical thresholds is preferable. The combination
of the two functions, in terms of specific conservation areas in a ‘matrix’ of an
agroforestry mosaic that allows for both productive and protective functions requires
separate management and regulatory approach to the two types of areas and specific
attention to their interface

5.3 Where earlier summaries of the impact of land use change on watershed functions
had found little solid evidence for areas larger than 100 km2, our data for Way
Besai (400 km2) and Mae Chaem (4000 km2) provide empirical evidence for an
increase in total water yield as well as changes in buffering for the former, for a
period of drastic land cover change (60 -> 15% forest cover); for the Mae Chaem the
historical land cover change has been less dramatic that that in Way Besai, but
simulation models suggest that a significant increase in water yield between natural
vegetation and the current land use mosaic has taken  place; plausible scenarios of
further land use change will continue on this trend towards greater water yield and
less tree and forest cover.  
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5.4 The current evidence from historical change in the benchmarks and from the
(validated) models suggests that increases in peak flows are proportional to changes
in total water yield; more-than-proportional increases in peak flows only are expected
for land use scenarios that lead to substantial soil degradation

5.5 Realistic land use change scenarios for the uplands of Asia have to provide
livelihood and income opportunities for a rural population that is still growing.
Declaring large areas as ‘forest reserves’ and expecting farmers to leave is not
realistic. Mosaics with tree-based production systems, rather than open-field crops
may provide the best way to provide income while maintaining soil conditions
conducive to infiltration. The biodiversity value will depend on the opportunity to
reserve (segregate) parts of the area for specific conservation purposes, in a socially
integrated way. The impacts of land use patterns on biodiversity is likely to exceed
the impacts on watershed functions.

5.6 Specific attention to riparian zone forests  as landscape elements that can reduce
sediment loads of streams as well as play a role in connectivity for plants and animals
is warranted; this may be one of the main items where a watershed function and a
biodiversity conservation agenda find synergy; a second shared interest is likely to be
in the maintenance of wetlands along the river, that can provide a buffer function
reducing the risk of flooding downstream, as well as providing important habitat for
flora and fauna.

5.7 Ridge top forests can also play an important role as corridors for flora and fauna and
thus for biodiversity conservation, especially where human access is primarily linked
to the valleys. Ridge top forests (but not their spatial continuity) are relevant for
protecting groundwater flows that are tapped for drinking water or other situations
where water quality is of specific interest. The emphasis on riparian forests may thus
need some nuance.

5.8 While the benefits of forest conversion for total water yield form a positive ‘far
field’ effect, the associated higher peak levels require adjustments in the stream bed,
depending on the degree to which barrages and dams regulate flows and provide
temporary storage

5.9 Local hazards of a change in watershed functions are likely to be more clearly
identifiable, both because of the relative size of the ‘insult’ is likely to be larger, and
because of intrinsic scaling properties for peak flows. Local stakeholders are likely to
have a clear interest in protecting the areas from where they derive their drinking
water, as well as areas that stabilize slopes above villages or other vital functions; this
type of land use zoning will differ from the broad land use classifications that were
developed for many countries in SE Asia, with little implementation on the ground.
Where derived from a local negotiation process and supported by local monitoring of
water quality and other indicators of watershed functions. Local ecological
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knowledge is more likely to acknowledge the changes in effective infiltration than
spatial extrapolation methods based on currently available soil information.

5.10 Protecting existing forests on slopes with soils that allow high infiltration rates
makes sense, both for water quality and potentially for supporting dry period/season
flows, especially where annual rainfall is more than say 1500 mm year-1.

5.11 Expectations of a recovery of infiltration based on planting trees are seldom
realistic (except for the direct early effect of planting holes in sealed-surface
conditions), and the net effect of rapidly increasing water use and slowly recovering
infiltration on dry season flows is likely to be negative for a time frame beyond
'projects' life spans.

5.12 In the interactions between stakeholders in real landscapes, the tangle of
convenient myths, half-baked perceptions, sound experience and valid concerns needs
to be acknowledged as such – science-based evidence (the core of this report) can
only help if it can provide a common platform for discussions.
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7.  Appendices7.  Appendices   

7.1 Appendix 1. Formal description and terms of reference for Activity 2

Goals:
a) Use process-based hydrological models to assess the impacts of land cover changes

on hydrological effects such as water flow and water quality over at the micro
(watershed) and meso (river basin) scale, and characterize the areas that cause and
experience impacts according to population, biodiversity, and poverty (to the extent
possible);

b) Explore the complementarity and consistency of hydrological models with different
ranges of scale and differing emphases in the representation of physical processes

c) To the extent feasible, formulate guidelines or generalizations on the impact of
biodiversity-relevant land use changes on hydrological processes such as
sedimentation and landslides, as a function of watershed scale, land cover/land use,
climate, and topography.

Phase II deliverables (activity I + II)
1. Implementation protocols for all sub-activities under Activities 1 and 2. These

will provide detailed specification (subject to revision) of the performance of
these tasks, including data sets and variables to be used as inputs, models and
analytic procedures to be applied, outputs expected, geographic scale and scope of
analysis, timing of activities, and assignment of responsibilities.

2. Technical reports covering all activities, detailing data sources, methods and
models applied, substantive outputs, and policy or methodologically relevant
conclusions.

3. Spatial datasets and analyses, with appropriate metadata, in archival form (e.g.
CD-ROM) available by ftp from a public website:

a) covering the humid pantropics and impact areas, including an integrated
global gridded dataset incorporating key variables from activity 1A
(population, biodiversity, land use change scenarios, hydrological impact
areas, hydrological hotspot areas)

b) for MMSEA and Mae Chaem watersheds, comparable data where
appropriate.

4. Two (or more) manuscripts of quality suitable for submission to internationally
recognized refereed journals, possibly with World Bank staff and/or other partners
as coauthors.

a)  At least one manuscript, corresponding to activity 1, should make a
significant contribution to delineating, at the global scale, areas and
populations that are (or are not) at potential risk from the hydrological
impacts of land use change in the study focus areas; and the degree to
which threat-posing land use change also impacts biodiversity. (These
results also will feed into the ASB Global Synthesis Report which, in turn,
will contribute to the ASB cross-cutting assessment of ‘Forest and
Agroecosystems Tradeoffs in the Tropics’ that has been selected as a sub-
global component of the Millennium Ecosystem Assessment.)
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b)  At least one manuscript, corresponding to activity 2, should represent a
significant addition to the methodological and substantive understanding
of the relation among land use change, biodiversity, and hydrological
functions in small and medium basins.  The manuscripts should also
provide substantive information on hydrological risks and relevant policies
in MMSEA.

5. Two  (or more) ASB policybriefs derived from manuscripts described above.
c) At least one brief on the coincidence of biodiversity-rich rainforest

habitats and human populations ‘upstream’ and the exposure of human
populations ‘downstream’ to degradation of watershed functions, with
particular attention to flood regulation, describing implications for policies
that seek to address poverty, biodiversity, and hydrological externalities
through a common instrument

d) At least one brief focusing on land management in medium and small
watersheds, discussing the need for and possibilities for policies to shape
land use patterns so as to improve biological, hydrological, and
agricultural outcomes.

6) Two policy seminars (one in Washington, DC, at the Bank, the other in the Hague at
the Netherlands Ministry of Foreign Affairs) to report results.


