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GenRiver  input  parametersGenRiver  input  parameters

Table 2.2.  The model input is thus driven by the following parameters

Acronym Definition
Dimension
[default
value]

Notes

DailyRain (I,t) Daily rainfall for each unit i mm (= l per
m2)

Located in Stella

RainIntensMean Average rainfall intensity mm/day Located in Stella

UseSpatVarRain Option to use spatial rainfall distribution
generated from SpatRain module

mm Located in Stella

RainIntensCoefVar Coefficient of variation of rainfall
intensity

Located in Stella

DebitData Daily discharge data mm Located in Stella
InterceptPerClass (j) Interception storage capacity per land

cover class
mm Located in Excel

LandCoverFreq (i,t) Land cover class frequency per unit i [] Located in Excel
MaxInfRate (i) Maximum infiltration capacity per unit i mm day -1

(500)
Located in Stella

RelativeDrought
Threshold (j)

Drought-limitation to transpiration per
land cover class, as fraction of field
capacity

[] Located in Excel

FieldCapacity (i) Field capacity of the soil (soil water
content 1 day after ‘soaking’ rain

mm (600) Located in Stella

SoilSatminusFC (i) Difference between saturation water
storage capacity and field capacity of the
soil

mm (100) Located in Stella

MaxDynGrWatStor
e (i)

Dynamic groundwater storage capacity mm (350) Located in Stella

Routing Distance (i) Distance from centre of subcatchment to
measurement point

km Located in Excel

PerFracMultiplier Daily soil water drainage as fraction of
groundwater release fraction

[] (0.5) Located in Stella
Located in Stella

GWReleaseFracVar An option to have a constant
groundwater release fraction for each
subcatchment or using single value for
the whole catchment

[] (1)

GWReleaseFracCon
st (i)

Daily groundwater release fraction [] (0.03) Located in Stella

InitRelSoil Initial soil water content relative to field
capacity

[] (1) Located in Stella

InitRelGroundwater Initial groundwater store relative to
maximum value

[] (1) Located in Stella

EPot (t) Potential evapotranspiration (Penmann
type)

mm (5) Located in Excel

Area (i) Area of each subcatchment km2 Located in Excel
Note: index t refers to time dependent input, i to subcatchment and j to land cover classes
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In the model a number of 'array' dimensions is used. Space-related properties are
described with the 'sub-catchment' array, that is (potentially) used to specify soil and
groundwater properties as well as the 'routing' time for stream discharge to reach the
point where the river is monitored. A number of land cover classes can be distinguished
(as in the 'FALLOW' model, but the GenRiver model operates on daily time steps, while
FALLOW has a yearly time step), with different properties for interception of rainfall and
water use by transpiration (both at the potential level and where a drought threshold is
passed). Time is the main dimension of change, of course, and rainfall is the main time-
dependent input, that can be made specific to each sub-catchment (but not differentiating
land cover classes). Surface infiltration properties are currently described as a constant,
but they may well have to be made dependent on sub-catchment. A relationship between
this property and the land cover class is required that describes the change in this property
as a function of time since land cover change.

2.2.5  SpatRain2.2.5  SpatRain

Variations in river discharge tend to decrease with increasing area of consideration, partly
due to a decrease in temporal correlation of rainfall events across space. Patchiness of
rainfall can contribute to an increase of yield stability over space. Existing rainfall
simulators tend to focus on station-level time series, not on space/time autocorrelation.
The SpatRain model described here was constructed to generate time series of rainfall
that are fully compatible with existing station-level records of daily rainfall, but yet can
represent substantially different degrees of spatial autocorrelation. Calculations start from
the assumed spatial characteristics of a single rainstorm pathway, with a trajectory for the
core area of the highest intensity and a decrease of rainfall intensity with increasing
distance from this core. The model can derive daily amounts of rainfall for a grid of
observation points by considering the possibility of multiple storm events per day, but not
exceeding the long-term maximum of observed station-level rainfall.  Options exist for
including elevational effects on rainfall amount. SpatRain is implemented as an Excel
workbook with macros that analyze semi-variance as a function of increasing distance
between observation points, as a way to characterize the resulting rainfall patterns
accumulated over specified lengths of time (day, week, month, year).

The SpatRain model starts from the spatial characteristics of a single rainstorm
pathway (with a trajectory for the core area of the highest intensity and a decrease of
rainfall intensity with increasing distance from this core) and can derive daily amounts of
rainfall for a grid of observation points by considering the possibility of multiple storm
events per day.  Design features include:
Ø the simulated rainfall for any point in the landscape must be consistent with existing

data on the frequency distribution of daily rainfall;
Ø the program must allow for spatial trends in mean rainfall, e.g. due to elevational

effects;
Ø the program should analyze semivariance as a function of increasing distance between

observation points, as a way to characterize the resulting rainfall patterns accumulated
over specified lengths of time (day, week, month, year) and identify the storm-level
parameters that lead to specified degrees of spatial correlation; and
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Ø for use in combination with a hydrological model, SpatRain should allow for the
identification of subcatchments in a watershed area and allow averaging the point grid
pattern to derive the daily average rainfall per subcatchment.

Description of the modelDescription of the model

Approach to  the  problemApproach to  the  problem

Station-level daily records are often the only information available on the distribution of
rainfall. Such data can be represented as a series of monthly ‘exceedance’ graphs, derived
from say 30-year data. Between months of the year and locations we may expect
differences in the intercept with the X-axis or ‘frequency of wet days’ (or days with a
measurable amount of precipitation, usually defined as > 0.5 mm day-1), the intercept
with the Y-axis or maximum amount of rainfall in a single day recorded in that particular
month of the year, and in the curvature of the (monotonously rising) line between these
two points (Fig. 2.42).

Figure 2.42.  Input distribution of station level rainfall depth in three measurement stations that
were combined, as they don’t show essential differences.

Conceptually one can imagine a procedure that reshuffles measured daily sequences of
rainfall while maintaining the monthly total, like rearranging a jackpot, where the
variability of 3 values exposed on the window should follow our expectation:
homogenous (apple-apple-apple) or heterogeneous (apple-banana-orange). The total set
of permutations of 30 sets of jackpot with 30 pictures (for 30 days and only 30 cells) is
enormous, and among these we can expect to find a substantial variation in degrees of
spatial autocorrelation. By generating a sample of these reshuffling results, calculating
autocorrelation and then selecting specific configurations, we would meet the key design
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criteria specified above. The program will, however, be rather cumbersome and time
consuming if large areas are to be considered, and the selection of results that meet a
specific change in spatial autocorrelation with increasing distance may require a large
subset of reshuffling results. More efficient algorithms are desirable, but the ‘jackpot’
analogue shows that the design rules are not mutually incompatible.  A more direct
approach can be taken if we assign specific spatial properties to single storm events and
then adjust the frequency of storms and the intensity of rainfall in the core area of these
storms to match the existing station records.

Assumed storm propertiesAssumed storm properties

Three parameters are used here for describing rainfall in the core area: the length of the
core trajectory, the radius of the core area and the rainfall depth in the core area (Fig.
2.43). Two further parameters describe the relative decrease of rainfall depth with
increasing distance from the core. The combination of these can produce the full scala of
‘homogenous’ to  ‘heterogeneous’ types of rain. These parameters can be related to
frictional forces forming thunderstorms or convective bands causing frontal circulation
(Pielke, 2002):

)e(1*II
f/d)(f

0d

←→−−=

where:
d is distance of a cell from the storm core (grid unit);
Id is rain intensity of a cell at distance d from the core (mm.d-1);
I0 is rain intensity at the core (mm.d-1);
f→ is spreading factor; and
f← is agglomerating factor.

Figure 2.43.  Assumed shape of individual storm events. Patchy rains are possibly formed
when f→ < f←(frictional forces), while homogenous rains are formed when f→ >
f←(frontal dynamics).

Matching spat ial  pattern with temporal  patternMatching spat ial  pattern with temporal  pattern

A single storm event will ‘wet’ (above the measurement threshold of 0.5 mm day-1 used
in most empirical data sets) a number of cells, some at the core intensity and some at a
lower intensity. Given a set of parameters for the storm trajectory, we can derive the
frequency distribution of rain depth in wetted cells, relative to the core rain intensity (p),
in n classes. Once this is known, the frequency distribution of core intensities (F) can be
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derived from the observed station level rain intensities (f). Frequency distributions of f, p
and F should have the same class number and interval order.  We use the following order
to define the class boundary: [max..max*q1],[ max*q1.. max*q2], [max*q2.. max*q3],…,[
max*qn.. min], where  max is the maximum data, min is the minimum data and n is class
intervals number.  The value of q is ranging from 0 to 1 and calculated as follows:

10q,eq )/nln(min/max K==

We first need to recognize the combinations of classes pj and Fk that are compatible with
class fi:

( ) 1F0 1,p0 1,f0 ;i~k&j|Fpf kji
ik,j,

kji ≤≤≤≤≤≤= ∑

For the highest rainfall class only one combination, involving the highest class of both p
and F will yield the desired result, but for the other classes there can be several
combinations of p and F that yield the same result (the tail end of a big rainfall event, a
medium fraction of a medium storm or the core area of a small storm). We can approach
it working our way from the top down, but a simpler derivation starts from the
observation that for all distributions f, p and F the sum equals 1. By assuming that the
resultant (f) comes from the multiplication between p and F, we then get this basic
equation:
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From the equation, we can derive a criterion for the shape of the p distribution (that
depends on assumed storm properties) that is compatible with the targeted f distribution.
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kF , Fn would violate the assumption of non-negative

subsequent F terms. So, a cross-over of p and f indicates incompatibility of the storm-
level assumptions  that generate the p curve   with the station-level rainfall records
 that generate the f curve.  Figure 2.44 illustrates the compatibility of intensity
distribution from two contrasting spatial patterns of 30-grid maps with temporal
distribution from 30-day station record.  Pattern B of exactly similar distribution to the
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station record rainfall produces compatible F as shown in Fig. 2.44.D, whereas pattern C
is incompatible with the station record distribution as indicated by negative values of F in
Fig. 2.44.E.  This means, it is impossible to arrange rainfall maps of pattern C using the
existing temporal distribution.

A

B C

D E

Figure 2.44.  Compatibility of intensity distribution from two spatial patterns (B and C)
with temporal distribution from station records (A). Pattern B is compatible (D)
while pattern C is incompatible (E).
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Considering multiple storm eventsConsidering multiple storm events

Equation )e(1*II
f/d)(f

0d

←→−−=  may produce a narrow-spread area of single storm
events, on which its wet cells ratio relative to total area (c1) does not match the wet days
fraction of that specific month (d).   Hence, we need to allow for multiple storm events,
depending on the area fraction wetted by a single event and the time fraction of rainy
days at the measurement station level. For spatially independent multiple events on a
single day we can derive that probability of dry days on a given month, P|δ |, should meet
the probability of dry cells during single event, P|χ|, to the power of events number (N):

N
÷PäP =

Where P|δ |=1-d and P|χ|=1-c1.  Thus, the number of events is:

)cln(1
d)-ln(1

N
1−

=

Cross-scale  probabil i ty  of  storm eventsCross-scale  probabil i ty  of  storm events

Patchy rains have less wet fraction than homogeneous rains in space.  In order to
conserve each cell to having uniform chance of being hit by storms in time, patchy rains
should have higher probability to occur than homogeneous rains.  Consequently, the
cross-scale probability of storm with N number of events (P(EN)) is defined from wet
days fraction (d) by taking wet cells fraction of N storm events (cN) into account:

( )
N

N c
d

EP =

Considering elevational effectConsidering elevational effect

Rainfall patchiness can also be affected by elevational effects of the area. Thus, rainfalls
at particular degree of patchiness generated by the above procedures should be corrected
if applied on an area with elevational effects. The elevation modifier of rainfall at
elevation z (Xz) is assumed as rainfall average at that elevation (µz) relative to overall
average (µ):

ì

ì
X z

z =

In fact we are modifying the amount of rain that any storm brings to any cell, not the
preferred pathway of storm trajectories. Though similar multipliers we can introduce
‘rain shadow’ effects that depend on a preferential direction of storms and gradients in
elevation.

Patchiness  indicatorPatchiness  indicator

Semivariogram is used as quantitative spatial pattern indicator of simulated rainfall (Fig.
2.45). Spatial distribution of rain intensity from the storm cores can be distinguished by
semivariance increase (dS) within the distance range of increasing semivariance (dh) or
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the slope (s=dS/dh).  From Fig. 2.45, it is expected that patchy rains will have higher dS
within shorter dh (steeper slope) than homogeneous rains.  Moreover, based on behavior
of the slope, patchiness can be quantified using fractal dimension (D) (Bian,1997):

(s/2)3D −=

Figure 2.45.  Fractal dimension as defined by slope of semivariance range is used as
patchiness indicator of rainfall.

The value of D ranges from 0 to 3.  Lower fractal dimension of a spatial pattern may be
interpreted as more fragmented pattern.  Thus, patchy rain is expected to have lower D
than the homogeneous.

Implementa t ion  in  SpatRa inImplementa t ion  in  SpatRa in

A flowchart of the program that implements the above conceptualization is shown in Fig.
2.46. The SpatRain simulator is freely available on our website
(http://www.worldagroforestrycentre.org/sea/products/AFmodels/spatrain.htm).  The
current version of the program is developed using VB macro in an Excel workbook.
Application to the Mae Chaem area at a 3 km2 grid cell resolution proved to be at the
edge of the program’s capability. To overcome the memory limitations, a standalone
version of SpatRain has been developed using Java programming language.  Fig. 2.47
shows one of the SpatRain-Java environment features in displaying the dynamic maps
(daily rainfall maps as the simulation outputs), static scalar maps (e.g. DEM) and static
discrete maps (e.g. sub-catchments boundary) at better resolution of 1 km2 grid cell.
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Figure 2.46. Flow diagram of model calculations in SpatRain
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(A) Simulated Daily Rainfall Maps

(B) DEM (C) Sub-cathment Boundary Map

Figure 2.47.  SpatRain-Java capability in handling maps with large number of grids: (A) dynamic
maps; (B) static scalar map (C) static discrete map.

2.2.6 WaNuLCAS2.2.6 WaNuLCAS

For a number of simulations reported here we made use of the detailed (‘level 3) water of
tree-soil-crop interactions WaNuLCAS (Van Noordwijk and Lusiana, 2000). The
WaNuLCAS model was developed to simulate a range of tree–soil–crop interactions in
agroforestry systems, for a wide range of soil, climate and slope conditions. Basic
ecological principles and processes are incorporated into the model using modules such
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as climate, soil erosion, sedimentation, water and nutrient balance, tree growth and
uptake, competition for water and nutrients, root growth, and soil organic matter and light
capture.

Where most models operating at landscape scale need information about
infiltration, they are not able to describe this important process at the relevant time-scale.
As there is important variation between soils in infiltration rates and there is no direct
way to derive such information at the scale required for our models, we need estimation
procedures, or ‘pedotransfer’ functions (Fig. 2.48).

INPUT   

Percentage of clay 40
Percentage of silt 10
Percentage of organic matter (1.7*C-Organic) 4.08  
Median particle size of sand 290  
Top Soil ? (Type 1 for top soil, 0 for sub soil) 1  
Suggested value for Bulk Density 1.217  
Bulk Density 1.22  
K used for defining field capacity 0.1 cm d-1
Use the pedotransfer estimate of Ksat? 1 = yes, 0 = no 1  
Your own estimate of Ksat 110 cm d-1
   
Results  (to be used in the next step to generate soil
hydraulic properties)   

Theta sat (Total saturated porosity) 0.485
m3 water m-3
soil

Ksat (saturated conductivity) 103.67 cm d-1
Alpha 0.0549 cm-1
Lambda -3.737  
N 1.138  

Field capacity based on critical K value 0.391
m3 water m-3
soil

Figure 2.48 A WaNuLCAS includes a pedotransfer function for estimating soil physical properties
on the basis of soil texture, based on Wosten et al. (1995)

Field capacity can be defined on the basis of height above a water table (and hence read
from the Theta - p relationship, or on the basis of a limiting unsaturated hydraulic
conductivity. A model user is asked to specify the value you want to use for this second
way of calculating where drainage effectively stops, e.g. 0.01 cm day-1. Inside
WaNuLCAS the first way of calculating field capacity will be applied, and the highest
value for theta from these two approaches will be applied in practice.
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Figure 2.48 B Relationship between volumetric water content (θ), (negative) pressure head (h)
and hydraulic conductivity (K) of a soil, as derived from the pedotransfer function used in
WaNuLCAS from soil textural information and applied in the daily calculations of water
transport in the soil

We will present a number of results regarding
A) validity tests of the model for prediction of plot-level run-off and subsurface

flows
B) exploration of the pedotransfer functions used in WaNuLCAS
C) analysis of surface runoff and erosion on the basis of rainfall intensity and soil

structure
D) analysis of changes in soil structure in a forest – coffee conversion time-series
E) parametrizatrion of water balance for an intensification series of upland

rice/fallow rotations in northern Thailand

A )  A )  validity tests  of  the model for prediction of  plot-level  run-off  and subsurfacevalidity tests  of  the model for prediction of  plot-level  run-off  and subsurface
flowsflows

The subsurface lateral flow description in WaNuLCAS is based on a 2-dimensional
extension of the “bucket overflow” concept. We decided to test the result of this with
those for a more detailed continuous flow, finite element model such as FUSSIM.
FUSSIM is a two-dimensional simulation model for describing water movement, solute
transport and root uptake of water and nutrients in partially saturated porous media
(Heinen and de Willigen, 1998).

The effect of slope and soil texture on lateral flow prediction according to
WaNuLCAS and FUSSIM was simulated using rainfall data of Pakuan Ratu, Lampung,
Indonesia for 1997, with a total rainfall of 1885 mm per year.  In this exercise both model
simulates a bare plot, 50 m in length and 2 m soil depth in sloping land.  Slope was varied
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between 15 – 90% and clay content was varied between 10 – 90%, keeping silt constant
at 10%.  At each run, the soil texture is homogenous over the whole soil layers.

B)  B)  explorat ion of  the  pedotransfer  funct ions  used in  WaNuLCASexplorat ion of  the  pedotransfer  funct ions  used in  WaNuLCAS

Dynamic models of the soil-plant-atmosphere continuum can help to clarify relationships
between land use and water resources, provided that they are correctly parameterized.
The WaNuLCAS model for Water, Nutrient, and Light Capture in Agroforestry Systems
was developed for such tasks in tropical conditions. However, the field measurements
required for full model parameterization are laborious, costly and time consuming, so
shortcuts are desirable. Pedo transfer functions (PTF) have been developed to predict the
main soil physical relationships (θ-h-K) from the measured percentages of clay, silt,
organic matter content, and bulk density. However, existing equations are largely based
on temperate soils and as they are empirical, rather than based on first principles, these
PTF’s may gave erroneous, or even completely absurd predictions when used outside the
range of soils from whose data they were derived. Even so, complete textural data are not
easily obtained, and as a further step, these data themselves may be derived from soil
classification data and manually assessed texture classes.

Suprayogo et al. (2003) described a new database, PTFRDB, of input parameters
for PTF’s  derived from 8915 data available worldwide, with good representation of
tropical soils. When the resultant estimates are used as basis for θ-h-K relationships, the
results of the PTFRDB appeared close to those derived from field measurements. The
largest deviations occurred on vertisols and mollisols, where bulk density and soil organic
matter content diverged.

A further test of these pedotransfer database was made for a 10 year simulation
with  WaNuLCAS for a simple agroforestry system. Total water use by trees and crop, as
well as deep infiltration into the soil, surface and subsurface lateral flows were compared
between a run based on full information on soil texture and bulk density, and runs based
on coarser estimates and soil classes.

C) Linking surface runoff  and erosion to  rainfal l  intensity  and soi l  s tructureC) Linking surface runoff  and erosion to  rainfal l  intensity  and soi l  s tructure

In WaNuLCAS, physical soil properties (i.e. texture, bulk density and organic matter
content) and soil structure dynamics (i.e. biological activity, dependent upon nutrition
provided by plants through litterfall and root decay) determine saturated hydraulic
conductivity (Ksat), and condition the processes of lateral flow and vertical infiltration.
Rain intensity, plant growth (through the interception of rain) and lateral flow (over the
surface and as sub-surface flows) influence infiltration, which determines the amount of
runoff water. Soil erosion is influenced by the amount of runoff water, the flow velocity
(which determines the maximum transport capacity for particulate matter) and the actual
concentrations of sediment (which depends on the particles’ ‘entrainment’ or ‘propensity
to join the flow’). Actual sediment concentrations in overland flow thus depend on the
steepness of the slope (determining the runoff velocity), the soil’s surface cover (canopy
of trees, shrubs, weeds, and litter: all of which reduce flow velocity at the surface and
thus cause the sedimentation of particulate matter) and the coefficient of entrainment
(which mainly depends on aggregate stability at the soil’s surface).
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Sediment concentration:
• Slope (→ speed)
• Soil surface cover
• Coefficient of 

entrainment

Soil Physic properties:
• Soil texture
• Bulk density
• SOM

Soil erosion

Run-Off

Soil infiltration

K Saturated

Lateral flow

Van Genuchten
equations

Rose equations

Dynamic of soil structure:
• Organism activities

(earthworm)
• Decay rate of soil pores

Top soil thickness

Plant Growth

Litterfall

Time available for infiltration:
• Rain duration (rain intensity)
• Rainfall delay to the soil (rain intercepted)
• Water ponding on the surface (slope)

Figure 2.49. Key factors in the soil erosion component of the WaNuLCAS model, which include
such well-established process descriptions as the ‘van Genuchten’ functions for soil water
conductivity under saturated (Ksat) and unsaturated conditions, and the ‘Rose equations’
for overland flow of soil particles

Table 2.3.  Soil infiltration rates for soils with good structure (Brouwer, et al., 2000)

Soil texture Infiltration rate, mm hr-1 Infiltration rate, mm day-1

Sand > 30 >720
Sandy loam 20 - 30 480 – 720
Loam 10 - 20 240 – 480
Clay loam 5 - 10 120 – 240
Clay 1 - 5 24 – 120

Soil loss is based on an equation developed by Rose (1985):

100
**)1(**2700

Q
CoverSE λ−=

with
E = soil loss per event (Mg ha-1)
S = sinus(slope)
Cover = fraction of soil-contact cover (0 – 1)
Q = surface runoff, mm per event

λ = entrailment factor with Cover
baree

15.0−= λλ  and bareλ  = entrailment for
bare soil

We compared simulations with an empirical data set based on runoff study in coffee
gardens with ages of 0 – 10 years in Sumber Jaya, West Lampung, Indonesia
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D) Dynamics  of  so i l  s tructureD)  Dynamics  of  so i l  s tructure

WaNuLCAS uses a dynamic representation of soil structure that affects the saturated
hydraulic conductivity and potential infiltration rate for the soil surface. The conductivity
derived by the pedotransfer function for the ‘default’ soil bulk density (which reflect a
large database for mainly European agricultural soils at ‘standard’ soil structure) is used
as ‘fall-back’ value. The model user can specify a better starting point for soil structure
(lower bulk density), but during the simulation there will be a decay of this additional
structure, as well as an opportunity to build new macroporosity through biological effects
based on the presence of surface litter.

E) Fal low intensif icat ion series  for  northern Thai landE) Fal low intensif icat ion series  for  northern Thai land

The WaNuLCAS model of tree-soil-crop interactions was used as a tool to simulate crop
yields, nutrient and water balance, in a series of ‘scenarios’ that represent reduced-fallow
shifting cultivation systems. WaNuLCAS can be used for both sequential and
simultaneous forms of agroforestry, and includes a module for ‘slash-and-burn’ land
clearing. Simulations were set up for a 12-year test period that could be used for 11 years
of fallow + 1 year of crop (growing upland rice), 10 years of fallow + 2 years of crop, 2
cycles of 5 or 4 year fallow and 1 or 2 years crop, or 3 cycles of 1, 2 or 3 years of fallow
plus 3, 2 or 1 years of crop. Soil property data were derived from Wangpakapattanawong
(2001) and from default values of the model. The tree parameters were derived from the
default values for Peltophorum in the WaNuLCAS tree library. Whenever the land was
not cropped, annual weeds were allowed to grow, using parameters for an ‘annual’ weed
that would die back at maturation and regrow from a seedbank.

Figure 2.50. Schematic
representation of the
dynamics of soil
structure as used in the
WaNuLCAS model
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2.2.7. VIC (The Mekong Basin)2.2.7. VIC (The Mekong Basin)

Streamflow regulation, deforestation, agricultural expansion and other man made changes
taking place in the Mekong basin have the potential to affect the streamflow patterns of
the Mekong and its tributaries and could have serious environmental, economic, and
social impacts on the region. The response of the Mekong water resources system to these
changes can be viewed as an interaction between the land surface hydrologic cycle, the
physical infrastructure of the water resources system (dams and reservoirs), and water
resources management practices (reservoir operating policies). Our intent is to examine
the underlying dynamics of he hydrologic cycle in the Mekong, and to use that
understanding in an attempt to under and ultimately predict the response of the system to
change.

The work being executed here is predicted on the ability to dynamically describe
the movement of water in drainage basins, from its mobilization across the landscape to
small streams, and subsequently down the channel system to large rivers. The
methodology chosen is to utilize a set of coupled geospatial models of the physical
aspects of the landscape with hydrology models, and the dataframes required to support
them. Hydrologic and water management simulation tools can be used to explore the
response of the water resources system to these interactions.  Macro-scale hydrology
models can simulate rainfall-runoff processes of large river basins like the Mekong
(Nijssen et al., 1997). These models are designed to represent the effects of vegetation on
runoff, and thus can be used to simulate the effects of vegetation change (like
deforestation and agricultural expansion) on surface hydrological processes. The effects
of flow regulation can be simulated using water management models (Hamlet and
Lettenmaier, 1999; Leung et al., 1999). Thus, a hydrology model when combined with a
water management model (e.g. Hamlet and Lettenmaier, 1999) can be used to model the
streamflow of the Mekong River and its tributaries.

It is worth noting that this basic strategy goes beyond “just” analysis of hydrographs.
1. Being able to even assemble the requisite data sets is already an important

synthetic activity. These data sets are very rarely complete (or even close to
it); hence models can be used as interpolation devices, allowing a more
complete analysis. Assembly of even what is considered “dataframes” or GIS
layers actually represents important decisions; where each such “layer” is a
data model in its own right.

2. If a model gets the variability in a time series about “right” (without force
fitting), then understanding is implicit.

3. The model can then be used to decompose the hydrograph signal into its
constituent processes.

4. With such a dynamical base, scenarios can be explored with some confidence.

2.2.7.1.  VIC: The Hydrology Model2.2.7.1.  VIC: The Hydrology Model

We based our analysis of the dynamics of water movement across the Mekong basin on
the Variable Infiltration Capacity (VIC) model, coupled to water routing and water
management models.
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VIC (Liang et al, 1994) was specifically designed for analysis of water (and
energy) fluxes in regional-scale, large river basins. It is a physically based model, which
nonetheless parameterizes small scale processes to allow application to large river basins,
which typically are resolved at spatial resolutions from 1/8 degree latitude by longitude
(e.g., where the resolution of the precipitation, temperature, radiative, and other surface
forcings are available or can be derived) to coarser resolutions such as the 2 degree global
application described by Nijssen et al (2002). Previous applications of VIC include such
large continental river basins as the Columbia (Nijssen et al., 1997), the Arkansas-Red
(Abdulla et al., 1996), and the Upper Mississippi (Cherkauer and Lettenmaier, 1999),
among other rivers. VIC has also been applied to the entire area of China (Su and Xie,
2003).

a) Surface Water and Energy Balance over a grid cell. A detailed description of the VIC
model can be found in Liang et al. (1994, 1996 and 1998) and Nijssen et al. (1997).
Briefly, the model (Fig. 2.51) has parameterizations to represent the vertical exchange of
moisture and energy between the vegetation canopy and the atmosphere, similar in many
respects to other Soil-Vegetation-Atmosphere Transfer Schemes (SVATS).  Its main
distinction from other SVATS is its representation of the effects of sub-grid spatial
variability in soil, topography, and vegetation (each vegetation cover class occupies a
specified fraction of the grid cell, as shown in the figure), and their effects on runoff
generation. VIC also simulates the spatial sub-grid variability in precipitation: the area
fraction of the grid cell experiencing precipitation increases with increasing intensity of
the precipitation event (Liang et al., 1996). For each vegetation cover class, the leaf area
index (LAI), canopy resistance, and relative fraction of roots in each soil layer is
specified. Evapo-transpiration from each vegetation type is calculated using a Penman-
Monteith formulation (Liang et al., 1994).

Figure 2.51. Variable Infiltration
Capacity - nLayer (VIC-nL)
macroscale hydrologic
model
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The soil is divided in the vertical direction in an arbitrary specified number of layers (for
most applications, 2 or 3 layers are commonly used). The sub-grid horizontal variability
in soil properties is represented statistically, using a spatially varying infiltration capacity.
The variable infiltration curve (shown in the figure) represents the fraction of the grid cell
where fast runoff is produced (by either saturation excess, or fast sub-surface flow).
Drainage between the soil layers is modeled as gravity driven, and the unsaturated
hydraulic conductivity is a function of soil moisture content, following the
parameterization by Campbell (1974). Another distinguishing characteristic of VIC is the
representation of base flow from the deeper soil layer as a nonlinear recession, following
the ARNO model base flow formulation (Todini, 1996).

The VIC model can be operated in two different modes: an energy balance mode
and a water balance mode. In the energy balance mode, all the water and energy fluxes
near the land surface are calculated, and the surface energy budget is closed by iterating
over an effective surface temperature. In the water balance mode, the effective surface
temperature is assumed to equal the air temperature and only the surface water balance
fluxes are calculated. In this study, the VIC model is operated in the water balance mode,
which is equivalent to the manner in which most operational hydrological models
function. Precipitation, maximum and minimum temperature, and wind speed are the
meteorological variables that drive the model in the water balance mode. Hourly
temperatures are estimated by fitting a spline function to the time series of daily
minimum and maximum temperatures. Daily precipitation inputs are distributed
uniformly in time throughout the day.

Figure 2.52. River network routing
scheme for VIC-nL
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b) Streamflow Routing. The VIC model is coupled to a streamflow routing scheme (Fig.
2.52) that transports the runoff generated within each grid cell through a specified
channel network. The scheme (Lohmann et al., 1996 and 1998) uses linearized St.
Venant’s equations, and permits computation of the hydrograph at any point of interested
in the channel network. The single runoff time-series produced for each grid cell is routed
to the grid cell outlet using a triangular unit hydrograph. Flow from each grid cell can exit
into any one its eight neighbors. The routing model does not account for water
management (channel losses, extractions, diversions and reservoir operations).

c) Water Management: Reservoir Water management and Irrigation. Water resources
currently sustain a relatively dense population of 73 million people who obtain most of
their protein from fish harvested from the river. Many people also rely heavily on the
annual flooding cycle for crop irrigation. The anthropogenic changes taking place in the
Mekong Basin have significant implications on the resources of the Mekong River.
Population growth in the Mekong Basin has resulted in widespread conversion of forests
into agricultural uses to meet increased demand for food. The increase in agricultural
areas and irrigation, along with urbanization and industrialization, led to an overall
increase in demand for water. The major water infrastructures in the basin are the dams,
which were constructed over the last four decades in China, Lao, Vietnam and Thailand.
In Cambodia and Vietnam, the wetlands, Tonle Sap Lake and the numerous dykes form
the main water infrastructures are playing a role directly or indirectly in the occurrence of
the flood and also the drought in the basin. Massive hydroelectric dams are planned or
have already been constructed along the river course.

Figure 2.53. Existing and proposed dams
in the Mekong Basin


